OpenGL之着色器

2023-09-22 12:44:22

着色器(Shader)是运行在GPU上的小程序。这些小程序为图形渲染管线的某个特定部分而运行。从基本意义上来说,着色器只是一种把输入转化为输出的程序。着色器也是一种非常独立的程序,因为它们之间不能相互通信;它们之间唯一的沟通只有通过输入和输出。

GLSL

着色器是使用一种叫GLSL的类C语言写成的。GLSL是为图形计算量身定制的,它包含一些针对向量和矩阵操作的有用特性。

  1.  声明版本
  2. 输入和输出变量
  3. uniform
  4. main函数

每个着色器的入口点都是main函数,在这个函数中我们处理所有的输入变量,并将结果输出到输出变量中。

in type in_variable_name;
in type in_variable_name;

out type out_variable_name;

uniform type uniform_name;

int main()
{
  // 处理输入并进行一些图形操作
  ...
  // 输出处理过的结果到输出变量
  out_variable_name = weird_stuff_we_processed;
}

每个输入变量也叫顶点属性(Vertex Attribute)。我们能声明的顶点属性是有上限的,它一般由硬件来决定。OpenGL确保至少有16个包含4分量的顶点属性可用,但是有些硬件或许允许更多的顶点属性,你可以查询GL_MAX_VERTEX_ATTRIBS来获取具体的上限:

int nrAttributes;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &nrAttributes);
std::cout << "Maximum nr of vertex attributes supported: " << nrAttributes << std

数据类型

GLSL有数据类型可以来指定变量的种类。GLSL中包含C等其它语言大部分的默GLSL有数据类型可以来指定变量的种类。GLSL中包含C等其它语言大部分的默认基础数据类型:intfloatdoubleuintbool。GLSL也有两种容器类型,它们会在这个教程中使用很多,分别是向量(Vector)和矩阵(Matrix),:intfloatdoubleuintbool。GLSL也有两种容器类型,分别是向量(Vector)矩阵(Matrix)。

向量

GLSL中的向量是一个可以包含有2、3或者4个分量的容器,分量的类型可以是前面默认基础类型的任意一个。它们可以是下面的形式(n代表分量的数量):

类型含义
vecn包含n个float分量的默认向量
bvecn包含n个bool分量的向量
ivecn包含n个int分量的向量
uvecn包含n个unsigned int分量的向量
dvecn包含n个double分量的向量

一个向量的分量可以通过vec.x这种方式获取,这里x是指这个向量的第一个分量。你可以分别使用.x.y.z.w来获取它们的第1、2、3、4个分量。GLSL也允许你对颜色使用rgba,或是对纹理坐标使用stpq访问相同的分量

向量这一数据类型也允许一些有趣而灵活的分量选择方式,叫做重组(Swizzling)。重组允许这样的语法:

vec2 someVec;
vec4 differentVec = someVec.xyxx;
vec3 anotherVec = differentVec.zyw;
vec4 otherVec = someVec.xxxx + anotherVec.yxzy;

你可以使用上面4个字母任意组合来创建一个和原来向量一样长的(同类型)新向量,只要原来向量有那些分量即可;然而,你不允许在一个vec2向量中去获取.z元素。我们也可以把一个向量作为一个参数传给不同的向量构造函数,以减少需求参数的数量:

vec2 vect = vec2(0.5, 0.7);
vec4 result = vec4(vect, 0.0, 0.0);
vec4 otherResult = vec4(result.xyz, 1.0);

输入与输出

GLSL定义了inout关键字专门来实现这个目的。每个着色器使用这两个关键字设定输入和输出,只要一个输出变量与下一个着色器阶段的输入匹配,它就会传递下去。但在顶点和片段着色器中会有点不同。

顶点着色器应该接收的是一种特殊形式的输入,否则就会效率低下。顶点着色器的输入特殊在,它从顶点数据中直接接收输入。为了定义顶点数据该如何管理,我们使用location这一元数据指定输入变量,这样我们才可以在CPU上配置顶点属性。我们已经在前面的教程看过这个了,layout (location = 0)。顶点着色器需要为它的输入提供一个额外的layout标识,这样我们才能把它链接到顶点数据

另一个例外是片段着色器,它需要一个vec4颜色输出变量,因为片段着色器需要生成一个最终输出的颜色。如果你在片段着色器没有定义输出颜色,OpenGL会把你的物体渲染为黑色(或白色)。

顶点着色器

#version 330 core
layout (location = 0) in vec3 aPos; // 位置变量的属性位置值为0

out vec4 vertexColor; // 为片段着色器指定一个颜色输出

void main()
{
    gl_Position = vec4(aPos, 1.0); // 注意我们如何把一个vec3作为vec4的构造器的参数
    vertexColor = vec4(0.5, 0.0, 0.0, 1.0); // 把输出变量设置为暗红色
}

片段着色器

#version 330 core
out vec4 FragColor;

in vec4 vertexColor; // 从顶点着色器传来的输入变量(名称相同、类型相同)

void main()
{
    FragColor = vertexColor;
}

Uniform

Uniform是一种从CPU中的应用向GPU中的着色器发送数据的方式,但uniform和顶点属性有些不同。首先,uniform是全局的(Global)。全局意味着uniform变量必须在每个着色器程序对象中都是独一无二的,而且它可以被着色器程序的任意着色器在任意阶段访问。第二,无论你把uniform值设置成什么,uniform会一直保存它们的数据,直到它们被重置或更新。

我们可以在一个着色器中添加uniform关键字至类型和变量名前来声明一个GLSL的uniform。从此处开始我们就可以在着色器中使用新声明的uniform了。我们来看看这次是否能通过uniform设置三角形的颜色:

#version 330 core
out vec4 FragColor;

uniform vec4 ourColor; // 在OpenGL程序代码中设定这个变量

void main()
{
    FragColor = ourColor;
}

我们在片段着色器中声明了一个uniform vec4的ourColor,并把片段着色器的输出颜色设置为uniform值的内容。因为uniform是全局变量,我们可以在任何着色器中定义它们,而无需通过顶点着色器作为中介。顶点着色器中不需要这个uniform,所以我们不用在那里定义它。 

float timeValue = glfwGetTime();
float greenValue = (sin(timeValue) / 2.0f) + 0.5f;
int vertexColorLocation = glGetUniformLocation(shaderProgram, "ourColor");
glUseProgram(shaderProgram);
glUniform4f(vertexColorLocation, 0.0f, greenValue, 0.0f, 1.0f);

首先我们通过glfwGetTime()获取运行的秒数。然后我们使用sin函数让颜色在0.0到1.0之间改变,最后将结果储存到greenValue里。

接着,我们用glGetUniformLocation查询uniform ourColor的位置值。我们为查询函数提供着色器程序和uniform的名字(这是我们希望获得的位置值的来源)。如果glGetUniformLocation返回-1就代表没有找到这个位置值。最后,我们可以通过glUniform4f函数设置uniform值。注意,查询uniform地址不要求你之前使用过着色器程序,但是更新一个uniform之前你必须先使用程序(调用glUseProgram),因为它是在当前激活的着色器程序中设置uniform的。

现在你知道如何设置uniform变量的值了,我们可以使用它们来渲染了。如果我们打算让颜色慢慢变化,我们就要在游戏循环的每一次迭代中(所以他会逐帧改变)更新这个uniform,否则三角形就不会改变颜色。下面我们就计算greenValue然后每个渲染迭代都更新这个uniform:

while(!glfwWindowShouldClose(window))
{
    // 输入
    processInput(window);

    // 渲染
    // 清除颜色缓冲
    glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
    glClear(GL_COLOR_BUFFER_BIT);

    // 记得激活着色器
    glUseProgram(shaderProgram);

    // 更新uniform颜色
    float timeValue = glfwGetTime();
    float greenValue = sin(timeValue) / 2.0f + 0.5f;
    int vertexColorLocation = glGetUniformLocation(shaderProgram, "ourColor");
    glUniform4f(vertexColorLocation, 0.0f, greenValue, 0.0f, 1.0f);

    // 绘制三角形
    glBindVertexArray(VAO);
    glDrawArrays(GL_TRIANGLES, 0, 3);

    // 交换缓冲并查询IO事件
    glfwSwapBuffers(window);
    glfwPollEvents();
}

配置顶点属性指针以及如何把它们都储存到一个VAO里。这次,我们同样打算把颜色数据加进顶点数据中。我们将把颜色数据添加为3个float值至vertices数组。我们将把三角形的三个角分别指定为红色、绿色和蓝色:

float vertices[] = {
    // 位置              // 颜色
     0.5f, -0.5f, 0.0f,  1.0f, 0.0f, 0.0f,   // 右下
    -0.5f, -0.5f, 0.0f,  0.0f, 1.0f, 0.0f,   // 左下
     0.0f,  0.5f, 0.0f,  0.0f, 0.0f, 1.0f    // 顶部
};

由于现在有更多的数据要发送到顶点着色器,我们有必要去调整一下顶点着色器,使它能够接收颜色值作为一个顶点属性输入。需要注意的是我们用layout标识符来把aColor属性的位置值设置为1:

version 330 core
layout (location = 0) in vec3 aPos;   // 位置变量的属性位置值为 0 
layout (location = 1) in vec3 aColor; // 颜色变量的属性位置值为 1

out vec3 ourColor; // 向片段着色器输出一个颜色

void main()
{
    gl_Position = vec4(aPos, 1.0);
    ourColor = aColor; // 将ourColor设置为我们从顶点数据那里得到的输入颜色
}

我们就必须重新配置顶点属性指针。更新后的VBO内存中的数据现在看起来像这样:

// 位置属性
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);
// 颜色属性
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)(3* sizeof(float)));
glEnableVertexAttribArray(1);

glVertexAttribPointer函数的前几个参数比较明了。这次我们配置属性位置值为1的顶点属性。颜色值有3个float那么大,我们不去标准化这些值。

由于我们现在有了两个顶点属性,我们不得不重新计算步长值。为获得数据队列中下一个属性值(比如位置向量的下个x分量)我们必须向右移动6个float,其中3个是位置值,另外3个是颜色值。这使我们的步长值为6乘以float的字节数(=24字节)。

#include <glad/glad.h>
#include <GLFW/glfw3.h>

#include <iostream>
#include <cmath>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow *window);

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 640;

const char *vertexShaderSource ="#version 330 core\n"
    "layout (location = 0) in vec3 aPos;\n"
    "void main()\n"
    "{\n"
    "   gl_Position = vec4(aPos, 1.0);\n"
    "}\0";

const char *fragmentShaderSource = "#version 330 core\n"
    "out vec4 FragColor;\n"
    "uniform vec4 ourColor;\n"
    "void main()\n"
    "{\n"
    "   FragColor = ourColor;\n"
    "}\n\0";

int main()
{
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);



    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);


    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }

 
    unsigned int vertexShader = glCreateShader(GL_VERTEX_SHADER);
    glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
    glCompileShader(vertexShader);
  
    int success;
    char infoLog[512];
    glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);
    if (!success)
    {
        glGetShaderInfoLog(vertexShader, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
    }
   

    unsigned int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
    glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);
    glCompileShader(fragmentShader);

    glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success);
    if (!success)
    {
        glGetShaderInfoLog(fragmentShader, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
    }
  

    unsigned int shaderProgram = glCreateProgram();
    glAttachShader(shaderProgram, vertexShader);
    glAttachShader(shaderProgram, fragmentShader);
    glLinkProgram(shaderProgram);
    glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);
    if (!success) {
        glGetProgramInfoLog(shaderProgram, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
    }
    glDeleteShader(vertexShader);
    glDeleteShader(fragmentShader);

    float vertices[] = {
         0.5f, -0.5f, 0.0f,  // bottom right
        -0.5f, -0.5f, 0.0f,  // bottom left
         0.0f,  0.5f, 0.0f   // top 
    };

    unsigned int VBO, VAO;
    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);
   
    glBindVertexArray(VAO);

    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);

    
    glBindVertexArray(VAO);


    
    while (!glfwWindowShouldClose(window))
    {
        
        processInput(window);

       
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT);

        
        glUseProgram(shaderProgram);

        
        double  timeValue = glfwGetTime();
        float greenValue = static_cast<float>(sin(timeValue) / 2.0 + 0.5);
        int vertexColorLocation = glGetUniformLocation(shaderProgram, "ourColor");
        glUniform4f(vertexColorLocation, 0.0f, greenValue, 0.0f, 1.0f);

        
        glDrawArrays(GL_TRIANGLES, 0, 3);

    
        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    
    
    glDeleteVertexArrays(1, &VAO);
    glDeleteBuffers(1, &VBO);
    glDeleteProgram(shaderProgram);

    
    glfwTerminate();
    return 0;
}


void processInput(GLFWwindow *window)
{
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);
}


void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    
    glViewport(0, 0, width, height);
}

更多推荐

【计算机网络】网络编程接口 Socket API 解读(5)

Socket是网络协议栈暴露给编程人员的API,相比复杂的计算机网络协议,API对关键操作和配置数据进行了抽象,简化了程序编程。本文讲述的socket内容源自Linuxman。本文主要对各API进行详细介绍,从而更好的理解socket编程。connectconnect()遵循POSIX.1-20081.库标准c库,li

IP归属地应用的几个主要特点

作为一款优秀的IP地址定位工具,主题IP归属地的应用无疑是最好的选择之一。该应用可以将您需要查询的IP地址快速定位到所在的具体物理位置,并提供详细的地址和地图信息。接下来,让我们一起来看一看IP归属地应用的几个主要特点:1.快速查询IP地址归属地主题IP归属地应用的查询速度非常快,您只需要输入需要查询的IP地址点击“查

微软宣布推广数字助理 Copilot;GPT 应用开发和思考

🦉AI新闻🚀微软宣布推广基于生成式人工智能的数字助理Copilot摘要:微软宣布将基于生成式人工智能的数字助理Copilot推广到更多软件产品中。新的AI助理MicrosoftCopilot将在Windows中无缝可用,包括Windows11桌面、Microsoft365、Outlook、Edge浏览器和必应。它能

【Linux网络编程】序列化与反序列化

我们网络收发数据实际上只能接收到字符串,但是在现实生活中描述一个客观物体都是以很多属性来描述的,所以在网络中结构体类型的数据更常见,那我们如何发送结构体数据呢?这里就涉及到协议的概念了。我们想象一个场景,在特种兵执行任务时,他们有特定的战术手语,这样他们就能根据手语进行相应的战术配合了。所以协议也是一样,客户端和服务器

【计算机网络】IP协议

文章目录TCP与IP之间的关系IP地址的认识协议报头格式1.报头和有效载荷如何分离?2.8位协议3.4位版本4.8位服务类型5.16位总长度6.8位生存时间TTL网段划分IP地址的划分子网划分CIDR的提出如何理解CIDRTCP与IP之间的关系如:假设你上高中时,班里有个同学叫张三,他的老爹是学校的校长你感觉每次考试都

微前端qiankun简易上手指南

微前端架构一、什么是微前端架构微前端是一种多个团队通过独立发布功能的方式来共同构建现代化web应用的技术手段及方法策略。微前端借鉴了微服务的架构理念,将一个庞大的前端应用才分为多个独立灵活的小型应用,每个应用都可以独立开发,独立运行,独立部署,再将这些小型应用联合为一个完整的应用。微前端既可以将多个项目融合为一,又可以

Pixea Plus for Mac:极简图片浏览,高效图片管理

在处理和浏览图片时,我们往往需要一个得心应手的工具,尤其是当你的图片库包含了各种不同格式,例如JPEG、HEIC、psd、RAW、WEBP、PNG、GIF等等。今天,我们要推荐的,就是一款极简、高效的Mac图片浏览和管理工具——PixeaPlus。PixeaPlusMac版是一款专为Mac用户设计的图片浏览器和管理工具

【Linux】自动化构建工具 —— make/makefile&&Linux第一个小程序 - 进度条

​​📝个人主页:@Sherry的成长之路🏠学习社区:Sherry的成长之路(个人社区)📖专栏链接:Linux🎯长路漫漫浩浩,万事皆有期待上一篇博客:Linux编译器gcc/g++的使用&&初识动静态链接库文章目录一、前言二、概念三、代码实现四、实现原理1、依赖关系和依赖方法2、清理①.PHONY伪目标②.PHO

ZABBIX 6.4安装部署

ZABBIX6.4安装部署zabbix的主要组成:1、ZabbixServer6.4:Zabbix服务端,是Zabbix的核心组件。它负责接收监控数据并触发告警,还负责将监控数据持久化到数据库中。2、ZabbixAgent:Zabbix客户端,部署在被监控设备上,负责采集监控数据,采集后的数据发送给ZabbixServ

林木种苗生产vr虚拟实训教学降低培训等待周期

林业种植管理在保护水土流失、气候变化及经济社会发展中发挥重要的作用,林业教学往往需要进入林区进行实操察验,在安全性、时间及效率上难以把控,因此有更多林业畜牧院校创新性地引进VR虚拟现实技术。在林业领域,实地调查是获取准确数据和深入了解森林生态的重要手段。然而,传统的实地调查方法存在诸多问题,如时间成本高、人力物力投入大

每天一个面试题之类加载机制、spirngboot的启动机制

jvm类加载机制Java虚拟机(JVM)的类加载机制是Java的关键部分,它负责加载、链接和初始化类。类加载机制的主要任务是将Java类的字节码文件转换为可以在JVM上执行的运行时数据结构。这个过程包括以下三个主要步骤:加载(Loading):在此阶段,类加载器负责查找并加载类的字节码文件。这个过程通常从类路径(Cla

热文推荐