Opencv-python去图标与水印方案实践

2023-09-20 17:21:51

RGB色彩模式是工业界的一种颜色标准,是通过对红(R)、绿(G)、蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色的,RGB即是代表红、绿、蓝三个通道的颜色,这个标准几乎包括了人类视力所能感知的所有颜色,是运用最广的颜色系统之一。
在这里插入图片描述

RGB 模式的彩色图像在读入 OpenCV 内进行处理时,会按照行方向依次读取该 RGB 图像的 B 通道、G 通道、R 通道的像素点,并将像素点以行为单位存储在 ndarray 的列中。例如,有一幅大小为 R 行×C 列的原始 RGB 图像,其在 OpenCV 内以 BGR 模式的三维数组形式存储。
在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
import cv2
img=cv2.imread('img\GDP.JPG')

h,w,l=img.shape
img.shape
	(347, 496, 3)

注:数据存储格式,每个单元数据范围在0~255,RGB中(255,255,255)为白色,(0,0,0)为黑色,在二位平面图上,原点(0,0)在图的左下角。

1. 按水印颜色范围滤除水印或按曲线颜色提取图形

按水印颜色范围滤除水印方案,主要是针对简单、水印背景颜色单一,例如上图中的灰色。使用windows系统自带工具“图画”,获取RGB颜色值。
在这里插入图片描述

如图中,选中1号位置取色器,放置到水印图标上2号位置,通过3号位置的颜色编辑器获取颜色数值。(默认灰色为:128,128,128)

R=242,G=242,B=244

删除灰色,以及临近灰色,同时,也可能把临近的灰色坐标也删除,删除就删除了吧,下一篇再说用处。

import numpy as np
import matplotlib.pyplot as plt
import cv2
img=cv2.imread('img\GDP.JPG')

h,w,l=img.shape
img.shape

for j in range(h):
    for k in range(w):
    	# 删除灰色水印
        if img[j][k][0] > 128 and img[j][k][1] > 128 and img[j][k][2] > 128 :
            img[j][k][0] = 255
            img[j][k][1] = 255 
            img[j][k][2] = 255
        # 删除标题
        if img[j][k][0] < 150 and img[j][k][1] < 150 and img[j][k][2] < 150 :
            img[j][k][0] = 255
            img[j][k][1] = 255 
            img[j][k][2] = 255            

plt.imshow(img,cmap=plt.cm.gray)

cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

对比Open CV输出,BGR颜色发生了变化。😊
在这里插入图片描述
对于背景复杂的情况,如下图所示,采用直接提取曲线的方案。
在这里插入图片描述

for j in range(h):
    for k in range(w):
        if img[j][k][0] <140 or img[j][k][0] >170 or img[j][k][1] <195 or img[j][k][1] >215 or img[j][k][2] <48 or img[j][k][2] >129:
            img[j][k][0] = 255
            img[j][k][1] = 255 
            img[j][k][2] = 255

在这里插入图片描述

2. Open CV图像修复(去除水印)

2.1. 图片抠图去水印的思路

  • 准备一张有水印的图片
    在这里插入图片描述
    此图命名为heart.JPG。

  • 用绘画工具在有水印的图片上框出水印位置
    在这里插入图片描述
    此图命名为heart_mask.jpg,标注水印位置,实际应用中,不带外边框,就是个白色矩形,可参见后续灰色图像效果。

  • 利用findContours函数查找水印所在的位置

  • 初始化一个与原图像大小相同的0矩阵

  • 将获取到的水印图片定位到初始化的矩阵中

  • 利用inpaint函数进行水印的去除

2.2. 实践案例及代码

import cv2
import numpy as np

# 读取模板图像
image = cv2.imread('img\heart_mask.jpg')
image_gray = cv2.cvtColor(image, cv2.COLOR_BGRA2GRAY)  # 转换成灰度图

col,row,l = image.shape
print(col,row)

# 初始化一个与原图像等同的矩阵
temp = np.zeros((col,row))
temp = temp.astype(np.uint8)

cv2.imshow('gary', image_gray)
cv2.waitKey(0)

# 查找图像中的矩阵
ret,thresh = cv2.threshold(image_gray, 250, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, 2, 1)
cnt=contours[0]
x, y, w, h = cv2.boundingRect(cnt) 
print(x, y, w, h)
# 由于背景太简单,识别矩形失败!替换为手工标注
x = 536
y = 240
w = 91
h = 94
img = cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)  

cv2.imshow('gary', img)
cv2.waitKey(0)

# 显示水印图片
image2 = cv2.imread("img\heart.JPG")
roi = image2[y:y+h,x:x+w,0:3]
roi = cv2.cvtColor(roi, cv2.COLOR_BGRA2GRAY)
ret,roi = cv2.threshold(roi, 80, 90, cv2.THRESH_BINARY)  # 参数可调节,因图片的像素而异
roi = cv2.morphologyEx(roi,cv2.MORPH_ELLIPSE,(5,5)) 

# 将水印图片赋值给初始化的矩阵图片
roi2 = temp[y:y+h,x:x+w]
roi3 = cv2.add(roi, roi2)
temp[y:y+h,x:x+w] = roi3

dst = cv2.inpaint(image2, temp, 30, cv2.INPAINT_NS) # 使用INPAINT_TELEA算法进行修复
cv2.imshow('TELEA', dst)
cv2.waitKey(0)

在这里插入图片描述

2.3. 关键图像处理技术

2.3.1. 图像阈值处理cv2.threshold

阈值的作用是根据设定的值处理图像的灰度值,比如灰度大于某个数值像素点保留。通过阈值以及有关算法可以实现从图像中抓取特定的图形,比如去除背景等。

cv2中单阈值函数:cv2.threshold(src, thresh, maxval, type[, dst]),返回值为retval, dst

其中:

  • src是灰度图像
  • thresh是起始阈值
  • maxval是最大值
  • type是定义如何处理数据与阈值的关系。有以下几种:
选项像素值>thresh其他情况
cv2.THRESH_BINARYmaxval0
cv2.THRESH_BINARY_INV0maxval
cv2.THRESH_TRUNCthresh当前灰度值
cv2.THRESH_TOZERO当前灰度值0
cv2.THRESH_TOZERO_INV 0当前灰度值

另外的取值为:
cv2.THRESH_OTSU使用最小二乘法处理像素点,而cv2.THRESH_TRIANGLE使用三角算法处理像素点。一般情况下,cv2.THRESH_OTSU适合双峰图。cv2.THRESH_TRIANGLE适合单峰图。单峰图或者双峰图指的是灰度直方图。

2.3.2. 形态学操作开闭运算(morphologyEx函数)

开运算基本原理

图像开运算是图像依次经过腐蚀、膨胀处理后的过程。图像被腐蚀后,去除了噪声,但是也压缩了图像;接着对腐蚀过的图像进行膨胀处理,可以去除噪声,并保留原有图像。

开运算实际是先腐蚀运算,再膨胀运算,把看上去把细微连在一起的两块目标分开了。

一般来说,开运算可以使图像的轮廓变得光滑,还能使狭窄的连接断开和消除细毛刺。开运算在过滤噪声的同时并没有对物体的形状、轮廓造成明显的影响,这是一大优势。当只关心物体的位置或者个数时,物体形状的改变不会给任务带来困扰,此时用开运算处理具有处理速度上的优势。

闭运算基本原理

闭运算是开运算的相反操作,先膨胀运算,再腐蚀运算,处理后的图片看上去将两个细微连接的图块连接在一起。

闭运算同样可以使得图像变得光滑,并且能够填平图像中的凹陷(即小孔),弥合小裂缝,而图像中目标的位置和形状可以保持不变。因此在图像去噪中,闭运算也是常用操作。

开运算、闭运算在 OpenCV 中可以使用形态学滤波函数morphologyEx()来进行。函数原型为:cv2.morphologyEx(src, op, kernel)

  • src:输入图像,即源图像,填Mat类的对象即可;
  • op: 表示形态学运算的类型,可以是如下之一的标识符:
    • MORPH_OPEN :开运算(Opening operation);
    • MORPH_CLOSE :闭运算(Closing operation);
    • MORPH_GRADIENT :形态学梯度(Morphological gradient);
    • MORPH_TOPHAT :“顶帽”(“Top hat”);
    • MORPH_BLACKHAT :“黑帽”(“Black hat”);
    • MORPH_ERODE :“腐蚀”;
    • MORPH_DILATE :“膨胀”。
  • kernel:形态学运算的内核。若为NULL时,表示的是默认使用参考点位于中心3 x 3的核。一般使用函数getStructuringEleme
    nt()配合这个参数的使用。getStructuringElement()函数会返回指定形状和尺寸的结构元素(内核矩阵)。

2.3.3. 数字修复算法cv2.inpaint

修复是图像插值。数字修复算法在图像插值,照片恢复,缩放和超分辨率等方面具有广泛的应用。

大多数人会在家里放一些旧的退化照片,上面有一些黑点,一些笔画等。你有没有想过恢复它?我们不能简单地在绘画工具中擦除它们,因为它将简单地用白色结构替换黑色结构,这是没有用的。在这些情况下,使用称为图像修复的技术。基本思路很简单:用邻近的像素替换那些坏标记,使其看起来像是邻居(取自维基百科),考虑下面显示的图像:

库函数:
dst = cv2.inpaint(src,mask, inpaintRadius,flags)

参数是:

  • src:输入8位1通道或3通道图像。
  • inpaintMask:修复掩码,8位1通道图像。非零像素表示需要修复的区域。
  • dst:输出与src具有相同大小和类型的图像。
  • inpaintRadius:算法考虑的每个点的圆形邻域的半径。
  • flags:
    • INPAINT_NS基于Navier-Stokes的方法
    • Alexandru Telea的INPAINT_TELEA方法

3. 第三方开源修复工具Lama Cleaner

Lama Cleaner 是由 SOTA AI 模型提供支持的免费开源图像修复工具。可以从图片中移除任何不需要的物体、缺陷和人,或者擦除并替换(powered by stable diffusion)图片上的任何东西。

详见“python抠图(去水印)开源库lama-cleaner入门应用实践”。

参考:

[1]. 肖永威. python抠图(去水印)开源库lama-cleaner入门应用实践. CSDN博客. 2023.09

[2]. 风华明远. CV2简单阈值函数:cv2.threshold(). CSDN博客. 2020.12

[3]. 奔向理想的星辰大海. 【Python】Python 去除图片水印. CSDN博客. 2023.08

[4]. 小鹏AI. OpenCV 图片去水印(不需要自己做水印模板). CSDN博客. 2020.05

[5]. wp猿. opencv之形态学操作开闭运算(morphologyEx函数). CSDN博客. 2022.01

[6]. mjiansun. 【Python】OpenCV中的cv2.inpaint()函数. CSDN博客. 2021.07

更多推荐

决策树的划分依据之:信息增益率

在上面的介绍中,我们有意忽略了"编号"这一列.若把"编号"也作为一个候选划分属性,则根据信息增益公式可计算出它的信息增益为0.9182,远大于其他候选划分属性。计算每个属性的信息熵过程中,我们发现,该属性的值为0,也就是其信息增益为0.9182.但是很明显这么分类,最后出现的结果不具有泛化效果.无法对新样本进行有效预测

网络安全(黑客)自学

前言1.不要试图以编程为基础的学习开始学习我在之前的回答中,我都一再强调不要以编程为基础再开始学习网络安全,一般来说,学习编程不但学习周期长,而且实际向安全过渡后可用到的关键知识并不多一般人如果想要把编程学好再开始学习网络安全往往需要花费很长时间,容易半途而废。而且学习编程只是工具不是目的,我们的目标不是成为程序员。建

重新理解 RocketMQ Commit Log 存储协议

最近突然感觉:很多软件、硬件在设计上是有rootreason的,不是bydesgin如此,而是解决了那时、那个场景的那个需求。一旦了解后,就会感觉在和设计者对话,了解他们的思路,学习他们的方法,思维同屏:活到老学到老。问题思考1、ConsumerQueueOffset是连续的吗,为什么?2、CommitLogOffse

Rust 数据类型 之 结构体(Struct)

目录结构体(Struct)定义与声明结构体定义结构体实例结构体分类单元结构体(UnitStruct)元组结构体(TupleStruct)具名结构体(NamedStruct)结构体嵌套结构体方法例1:结构体转换为字符串描述例2:矩形的周长和面积例3:结构体字段的更新与输出关联函数结构体方法与关联函数的区别参数传递方式的区

爬虫工作者必备:使用爬虫IP轻松获得最强辅助

目录一、爬虫IP的作用与优势二、选择合适的爬虫IP服务商三、使用爬虫IP的注意事项和技巧代码示例四、合法合规使用爬虫IP总结随着互联网的发展,数据已经成为企业竞争的核心资源。而获取这些数据的有效方式,就是通过爬虫技术。但是,爬虫在运行过程中很可能会触及到目标网站的限制,从而被禁止访问甚至封号。为了解决这个问题,我们可以

“熊猫杯” | 赛宁网安获网络安全优秀创新成果大赛优胜奖

9月11日,四川省2023年国家网络安全宣传周正式启动。由四川省委网信办指导,中国网络安全产业联盟(CCIA)主办,成都信息工程大学、四川省网络空间安全协会承办的“2023年网络安全优秀创新成果大赛—成都分站赛(暨四川省‘熊猫杯’网络安全优秀作品大赛)”落下帷幕。赛宁网安凭借主动防御安全网格解决方案脱颖而出,荣获大赛优

Hadoop源码阅读(一):NameNode启动

说明:1.Hadoop版本:3.1.32.阅读工具:IDEA2023.1.23.源码获取:Indexof/dist/hadoop/core/hadoop-3.1.3(apache.org)4.工程导入:下载源码之后得到hadoop-3.1.3-src.tar.gz压缩包,在当前目录打开PowerShell,使用tar-

C++中按引用传递参数

C++中按引用传递参数实参通常是通过值传递给函数的,这意味着形参接收的只是发送给它们的值的副本,它们存储在函数的本地内存中。对形参值进行的任何更改都不会影响原始实参的值。然而,有时候可能会希望一个函数能够改变正在调用中的函数(即调用它的函数)中的一个值,这可以通过引用传递的方式来完成。我们知道,变量是可以保存数据的内存

Linux 内存泄漏检测的基本原理

一、mtrace分析内存泄露mtrace(memorytrace),是GNUGlibc自带的内存问题检测工具,它可以用来协助定位内存泄露问题。它的实现源码在glibc源码的malloc目录下,其基本设计原理为设计一个函数voidmtrace(),函数对libc库中的malloc/free等函数的调用进行追踪,由此来检测

【送面试题】Linux中grep和find的区别及全面使用指南

AI绘画关于SD,MJ,GPT,SDXL百科全书面试题分享点我直达2023Python面试题2023最新面试合集链接2023大厂面试题PDF面试题PDF版本java、python面试题项目实战:AI文本OCR识别最佳实践AIGamma一键生成PPT工具直达链接玩转cloudStudio在线编码神器玩转GPUAI绘画、A

模型训练中的常见超参数解析

目录超参数学习率——lrbatch_sizenum_workersseed随机种子超参数学习率——lr数据集大小与学习率的调整有一定的关系,但并不是唯一决定学习率的因素。学习率的选择通常需要进行实验和调整,以找到最佳的学习率值,而这个最佳值可能会受到数据集大小的影响。下面是一些关于数据集大小和学习率调整的一般原则:1.

热文推荐