线性代数基础-行列式

2023-09-17 15:24:51

一、行列式之前的概念

1.全排列:

把n个不同的元素排成一列,称为n个元素的全排列,简称排列

(实际上就是我们所说的排列组合符号是Aarrange

2.标准序列:

前一项均小于后一项的序列就是标准序列

比如 1,3,6,7,9就是标准序列

3.逆序数:

序列中满足前一项大于后一项的数对个数

比如有一个序列:{1,6,9,2,3,4}
遍历该序列,看每个数之前有几个数比它大,加和就是逆序数的值

4.奇偶排列

排列的奇偶性与逆序数的奇偶性相同

5.对换

将序列里任意两个元素交换,这个过程叫对换

对换相邻元素的,称为“相邻对换”

经过任一次对换,排列的奇偶性改变

奇排列变成标准序列的对换次数是奇数,偶排列变成标准序列的对换次数是偶数

二、N阶行列式的展开

∣ a b c d ∣ = a d − b c \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad-bc acbd =adbc

有n行n列的这样的式子是n阶行列式,上图为二阶行列式

∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = ( a 11 ∗ a 22 ∗ a 33 ) − ( a 11 ∗ a 23 ∗ a 32 ) + ( a 12 ∗ a 23 ∗ a 31 ) − ( a 12 ∗ a 21 ∗ a 32 ) + ( a 13 ∗ a 21 ∗ a 32 ) − ( a 13 ∗ a 22 ∗ a 31 ) \begin{vmatrix} a11 & a12&a13 \\ a21 & a22&a23\\ a31&a32&a33 \end{vmatrix} = (a11*a22*a33)-(a11*a23*a32)+(a12*a23*a31)-(a12*a21*a32)+(a13*a21*a32)-(a13*a22*a31) a11a21a31a12a22a32a13a23a33 =(a11a22a33)(a11a23a32)+(a12a23a31)(a12a21a32)+(a13a21a32)(a13a22a31)

而行列式的值应按照以下规则计算
按**序列奇偶性(见上文)**决定符号,并逐行把数字相乘:
在这里插入图片描述
我们可以把矩阵理解为一个值,甚至常数,所以它满足我们学过的一切乘法,加法性质

三、三角行列式

主对角线:左上到右下
上三角行列式的主对角线下方都是0,行列式值等于主对角线乘积
注意:左下到右上不是主对角线

1.三角行列式

上三角行列式
∣ 1 2 3 0 1 2 0 0 2 ∣ = 1 ∗ 1 ∗ 2 \begin{vmatrix} 1 & 2 &3\\ 0 & 1&2\\ 0&0&2 \end{vmatrix} = 1 * 1 *2 100210322 =112
下三角行列式
∣ 1 0 0 4 1 0 3 1 2 ∣ = 1 ∗ 1 ∗ 2 \begin{vmatrix} 1 & 0 &0\\ 4 & 1&0\\ 3&1&2 \end{vmatrix} = 1 * 1 *2 143011002 =112
对角行列式
∣ 1 0 0 0 1 0 0 0 2 ∣ = 1 ∗ 1 ∗ 2 \begin{vmatrix} 1 & 0 &0\\ 0 & 1&0\\ 0&0&2 \end{vmatrix} = 1 * 1 *2 100010002 =112

四、行列式的性质

1.转置

对每一列,从上到下书写到行上,行列式的值不变
D = ∣ a b c d e f g h i ∣ = D T = ∣ a d g b e h c f i ∣ D = \begin{vmatrix} a & b &c\\ d & e&f\\ g&h&i \end{vmatrix} =D^T= \begin{vmatrix} a & d &g\\ b & e&h\\ c&f&i \end{vmatrix} D= adgbehcfi =DT= abcdefghi

2.交换

我们可以交换行列式的任意两行或者两列,但是会导致值变为相反数
推论1:若行列式D交换一次后,仍等于D,则D=0
推论2:若行列式有两行(列)相等,则行列式为0(交换后D=-D)
∣ a b c d e f g h i ∣ = ( − 1 ) ∗ ∣ a b c g h i d e f ∣ \begin{vmatrix} a & b &c\\ d & e&f\\ g&h&i \end{vmatrix} = (-1)* \begin{vmatrix} a & b &c\\ g & h&i\\ d & e&f \end{vmatrix} adgbehcfi =(1) agdbhecif

3.提取

我们可以把任意一个行或者一列的系数提取到行列式之前
推论:若两行(列)成比例,则行列式为0

∣ 2 a 2 b 2 c 2 d 2 e 2 f g h i ∣ = 2 ∗ ∣ 2 a 2 b 2 c d e f g h i ∣ \begin{vmatrix} 2a &2 b &2c\\ 2d & 2e&2f\\ g&h&i \end{vmatrix} =2* \begin{vmatrix} 2a & 2b &2c\\ d & e&f\\ g&h&i \end{vmatrix} 2a2dg2b2eh2c2fi =2 2adg2beh2cfi

4.拆分

∣ a + x b + y c + z d + w ∣ = ∣ a b + y c d + w ∣ + ∣ x b + y z d + w ∣ \begin{vmatrix} a +x& b+y\\ c +z& d+w\\ \end{vmatrix} = \begin{vmatrix} a & b+y\\ c & d+w\\ \end{vmatrix} + \begin{vmatrix} x& b+y\\ z& d+w\\ \end{vmatrix} a+xc+zb+yd+w = acb+yd+w + xzb+yd+w
我们可以把行列式任意行(列)拆分成和的形式,然后转换为行列式的和
但是要注意我们每次只能拆分一行(列),多行(列)拆分是错误的
∣ a + x b + y c + z d + w ∣ = ∣ a b c d ∣ + ∣ x y z w ∣ \cancel{ \begin{vmatrix} a +x& b+y\\ c +z& d+w\\ \end{vmatrix} = \begin{vmatrix} a & b\\ c & d\\ \end{vmatrix} + \begin{vmatrix} x& y\\ z& w\\ \end{vmatrix}} a+xc+zb+yd+w = acbd + xzyw

5.调整

把任意一行(列)乘以k之后可以加到另一行(列)上,行列式不变
通常这样得到三角行列式来快捷计算
∣ a b c d e f g h i ∣ = ∣ a b c d + k ∗ a e + k ∗ b f + k ∗ c g h i ∣ ( k 任取 ) \begin{vmatrix} a & b &c\\ d & e&f\\ g&h&i \end{vmatrix} = \begin{vmatrix} a & b &c\\ d+k *a & e+k*b&f+k*c\\ g&h&i \end{vmatrix} (k任取) adgbehcfi = ad+kagbe+kbhcf+kci (k任取)
例如我们可以轻易把某些行列式调整为三角行列式
∣ 1 1 2 4 3 1 3 2 2 ∣ = ∣ 1 1 2 0 − 1 − 7 0 − 1 − 4 ∣ = ∣ 1 1 2 0 − 1 − 7 0 0 3 ∣ = 1 ∗ ( − 1 ) ∗ 3 = − 3 \begin{vmatrix} 1 & 1 &2\\ 4 & 3&1\\ 3&2&2 \end{vmatrix} = \begin{vmatrix} 1 & 1 &2\\ 0 & -1&-7\\ 0&-1&-4 \end{vmatrix} = \begin{vmatrix} 1 & 1 &2\\ 0 & -1&-7\\ 0&0&3 \end{vmatrix} = 1*(-1)*3 = -3 143132212 = 100111274 = 100110273 =1(1)3=3

五、行列式的余子式和代数余子式

1.余子式

D = ∣ a b c d e f g h i ∣ D =\begin{vmatrix} a & b &c\\ d & e&f\\ g&h&i \end{vmatrix} D= adgbehcfi

M i j 是把 D 划去第 i 行 j 列的 ( n − 1 ) 阶行列式 M_{ij}是把D划去第i行j列的(n-1)阶行列式 Mij是把D划去第ij列的(n1)阶行列式

M 22 = ∣ a b c d e f g h i ∣ = ∣ a c g i ∣ M_{22} = \begin{vmatrix} a & \cancel{b} &c\\ \cancel{d} & \cancel{e} & \cancel{f} \\ g& \cancel{h} &i \end{vmatrix} = \begin{vmatrix} a &c\\ g & i\\ \end{vmatrix} M22= ad gb e h cf i = agci

2.代数余子式

A i j = ( − 1 ) i + j M i j A_{ij} = (-1)^{i+j} M_{ij} Aij=(1)i+jMij

3.按行或按列展开

D n = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n D_{n}=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in} Dn=ai1Ai1+ai2Ai2+...+ainAin
这是按行展开,其实就是对某一行遍历,然后划掉当前元素所在行列求代数余子式,然后乘当前位置的值,按列展开同理。

六、特殊行列式

1.和固定型

D n = ∣ a b b . . . b b a b . . . b b b a . . . b . . . . . . . . . . . . . . . . . . . . . . . . . . . b b b . . . b a ∣ = ∣ a + n b a + n b a + n b . . . a + n b b a b . . . b b b a . . . b . . . . . . . . . . . . . . . . . . . . . . . . . . . b b b . . . b a ∣ D_{n} =\begin{vmatrix} a & b &b&...&b\\ b & a&b&...&b\\ b&b&a&...&b\\ ...&...&...&...&...\\ ...&...&...&...&b\\ b&b&...&b&a\\ \end{vmatrix} = \begin{vmatrix} a+nb & a+nb &a+nb&...&a+nb\\ b & a&b&...&b\\ b&b&a&...&b\\ ...&...&...&...&...\\ ...&...&...&...&b\\ b&b&...&b&a\\ \end{vmatrix} Dn= abb......bbab......bbba........................bbbb...ba = a+nbbb......ba+nbab......ba+nbba........................ba+nbbb...ba

= ( a + n b ) ∣ 1 1 1 . . . 1 b a b . . . b b b a . . . b . . . . . . . . . . . . . . . . . . . . . . . . . . . b b b . . . b a ∣ =(a+nb) \begin{vmatrix} 1 & 1 &1&...&1\\ b & a&b&...&b\\ b&b&a&...&b\\ ...&...&...&...&...\\ ...&...&...&...&b\\ b&b&...&b&a\\ \end{vmatrix} =(a+nb) 1bb......b1ab......b1ba........................b1bb...ba
接下来就可以愉快的用第一行把行列式消成三角了
= ( a + n b ) ∣ 1 1 1 . . . 1 0 a − b 0 . . . 0 0 0 a − b . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 . . . 0 a − b ∣ = ( a − b ) n − 1 =(a+nb) \begin{vmatrix} 1 & 1 &1&...&1\\ 0 & a-b&0&...&0\\ 0&0&a-b&...&0\\ ...&...&...&...&...\\ ...&...&...&...&0\\ 0&0&...&0&a-b\\ \end{vmatrix} = (a-b)^{n-1} =(a+nb) 100......01ab0......010ab........................0100...0ab =(ab)n1

2.范德蒙德行列式

D n = ∣ x 1 0 x 2 0 x 3 0 . . . x n 0 x 1 1 x 2 1 x 3 1 . . . x n 1 x 1 2 x 2 2 x 3 2 . . . x n 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . x n n − 1 x 1 n x 2 n x 3 n . . . x n n ∣ = ∣ 1 1 1 . . . 1 x 1 1 x 2 1 x 3 1 . . . x n 1 x 1 2 x 2 2 x 3 2 . . . x n 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . x n n − 1 x 1 n x 2 n x 3 n . . . x n n ∣ D_{n} = \begin{vmatrix} x_1^0 & x_2^0 &x_3^0&...&x_n^0\\ x_1^1 & x_2^1 &x_3^1&...&x_n^1\\ x_1^2 & x_2^2 &x_3^2&...&x_n^2\\ ...&...&...&...&...\\ ...&...&...&...&x_n^{n-1}\\ x_1^n & x_2^n&x_3^n&...&x_n^n\\ \end{vmatrix}=\begin{vmatrix} 1 & 1 &1&...&1\\ x_1^1 & x_2^1 &x_3^1&...&x_n^1\\ x_1^2 & x_2^2 &x_3^2&...&x_n^2\\ ...&...&...&...&...\\ ...&...&...&...&x_n^{n-1}\\ x_1^n & x_2^n&x_3^n&...&x_n^n\\ \end{vmatrix} Dn= x10x11x12......x1nx20x21x22......x2nx30x31x32......x3n..................xn0xn1xn2...xnn1xnn = 1x11x12......x1n1x21x22......x2n1x31x32......x3n..................1xn1xn2...xnn1xnn

这样的行列式称为“范德蒙德行列式”
一般按照以下规则计算

D n = ∏ 1 < = i < j < = n ( x j − x i ) = − − − − − − − − − − − − − − − − − − − − − − − − − − − − ( x n − x n − 1 ) ( x n − x n − 2 ) . . . ( x n − x 1 ) ( x n − 1 − x n − 2 ) ( x n − 1 − x n − 3 ) . . . ( x n − 1 − x 1 ) . . . ( x 3 − x 2 ) ( x 3 − x 1 ) ( x 2 − x 1 ) D_n = \prod_{1<=i<j<=n}{(x_j-x_i)} = \\ ----------------------------\\ (x_n-x_{n-1})(x_n-x_{n-2})...(x_n-x_{1})\\(x_{n-1}-x_{n-2})(x_{n-1}-x_{n-3})...(x_{n-1}-x_{1})\\ ...\\ (x_{3}-x_{2})(x_{3}-x_{1})\\ (x_{2}-x_{1}) Dn=1<=i<j<=n(xjxi)=(xnxn1)(xnxn2)...(xnx1)(xn1xn2)(xn1xn3)...(xn1x1)...(x3x2)(x3x1)(x2x1)

证明过程如下
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

七、克莱姆法则(Cramer’s Rule)

{ a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = b 2 . . . a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = b n \begin{cases} a_{11}x_1 + a_{12}x_2+a_{13}x_3 +... +a_{1n}x_n= b_1 \\ a_{21}x_1 + a_{22}x_2+a_{23}x_3 +... +a_{2n}x_n= b_2 \\ ...\\ a_{n1}x_1 + a_{n2}x_2+a_{n3}x_3 +... +a_{nn}x_n= b_n \end{cases} a11x1+a12x2+a13x3+...+a1nxn=b1a21x1+a22x2+a23x3+...+a2nxn=b2...an1x1+an2x2+an3x3+...+annxn=bn
对于这样一个方程组,我们定义一个行列式,只存它的系数,称为”系数行列式
D n = ∣ a 11 a 12 a 13 . . . a 1 n a 21 a 22 a 23 . . . a 2 n a 31 a 32 a 33 . . . a 3 n . . . . . . . . . . . . . . . . . . . . . . . . . . . a ( n − 1 ) n a n 1 a n 2 . . . a n ( n − 1 ) a n n ∣ D_{n} =\begin{vmatrix} a_{11} & a_{12} &a_{13}&...&a_{1n}\\ a_{21} & a_{22}&a_{23}&...&a_{2n}\\ a_{31}&a_{32}&a_{33}&...&a_{3n}\\ ...&...&...&...&...\\ ...&...&...&...&a_{(n-1)n}\\ a_{n1}&a_{n2}&...&a_{n(n-1)}&a_{nn}\\ \end{vmatrix} Dn= a11a21a31......an1a12a22a32......an2a13a23a33........................an(n1)a1na2na3n...a(n1)nann

应用:克莱姆法则判断具有N个方程、N个未知数的线性方程组的解:

  • 当方程组的系数行列式不等于零时,方程组且具有唯一解;
  • 如果方程组无解或者有两个不同的解,方程组的系数行列式等于零
  • 克莱姆法则不仅仅适用于实数域,它在任何域上面都成立。

克莱姆法则的局限性:

  • 方程个数与未知数的个数不同时,系数的行列式等于零时,克莱姆法则失效。
  • 运算量较大,求解一个N阶线性方程组要计算N+1个N阶行列式
更多推荐

知识图谱:知识表示发展史

​数据是众多行业最核心的资产,人工智能技术与数据的深度融合也成为各大行业机构的重点关注内容,在多种人工智能的技术中,知识图谱因其能够更好的表达业务场景的多样全貌,可以更好的服务于人工智能时代的分析与决策场景,成为近年来的技术创新热点之一。知识的概念知识表示就是对知识的一种描述,或者说是对知识的一组约定,一种计算机可以接

论文阅读《ICDE2023:Relational Message Passing for Fully Inductive Knowledge Graph Completion》

论文链接工作简介在知识图谱补全(KGC)中,预测涉及新兴实体和/或关系的三元组,这是在学习KG嵌入时看不到的,已成为一个关键挑战。带有消息传递的子图推理是一个很有前途和流行的解决方案。最近的一些方法已经取得了很好的性能,但它们(1)通常只能预测单独涉及未见过的实体的三元组,无法解决更现实的同时具有未见过的实体和未见过的

【JavaEE】多线程(四)

多线程(四)在开始讲之前,我们先来回顾回顾前三篇所讲过的内容~线程的概念并发编程,多进程,比较重,频繁创建销毁,开销大Thread的使用创建线程继承Thread实现Runnable继承Thread(匿名内部类)实现Runnable(匿名内部类)使用lambda'Thread中的重要性启动线程start终止线程isInt

RocketMQ 核心编程模型以及生产环境最佳实践

文章目录1、RocketMQ的消息模型2、深入理解RocketMQ的消息模型2.1、RocketMQ客户端基本流程2.2、消息确认机制2.2.1、发送消息的方式第一种称为单向发送第二种称为同步发送第三种称为异步发送2.2.2、状态确认机制2.2.3、消费者也可以自行指定起始消费位点2.3、广播消息2.4、顺序消息机制1

GPT会统治人类吗

一前言花了大概两天时间看完《这就是ChatGPT》,触动还是挺大的,让我静下来,认真地想一想,是否真正理解了ChatGPT,又能给我们以什么样的启发。二思考在工作和生活中,使用ChatGPT或文心一言,逐渐形成了习惯,总想听听它们的意见。无论是小学作文还是小的编程测试例子,大部分情况下还是能够给我一个比较靠谱的意见,而

SpringBoot【SpringBoot介绍、SpringBoot入门、SpringBoot原理分析、SpringBoot原理分析】(一)-全面详解(学习总结---从入门到深化)

目录SpringBoot介绍_Spring缺点分析SpringBoot介绍_什么是SpringBootSpringBoot介绍_SpringBoot核心功能SpringBoot入门_通过官网搭建项目SpringBoot入门_通过IDEA脚手架搭建项目SpringBoot入门_SpringBoot项目结构SpringBo

超硬核的Move Dev Meetup上海线下交流会圆满结束

北京时间9月16日下午2–6点,由MoveFunsDAO联合其他组织举办的Move开发者线下交流会在上海悦达国际大厦圆满完成。此次活动也是上海区块链周的周边活动,受到了Web3从业者的广泛关注。本场交流会邀请了OpenBuild技术社区主理人Ian主持,50余位参会者来到现场参与此次交流。以下是嘉宾分享:Jolesta

基础算法--双指针算法

双指针算法1.基本介绍严格的来说,双指针只能说是是算法中的一种技巧。双指针指的是在遍历对象的过程中,不是普通的使用单个指针进行访问,而是使用两个相同方向(快慢指针)或者相反方向(对撞指针)的指针进行扫描,从而达到相应的目的。最常见的双指针算法有两种:一种是,在一个序列里边,用两个指针维护一段区间;另一种是,在两个序列里

药品咨询报告合集整理平台打包(一共36597份)【专题推荐】

<医药行业从业者必看>笔者今天分享高价值医药行业报告36500余份的获取/下载方法,报告涵盖了医药细分领域研究报告+药品报告(所有上市药品)+医药行业分析报告+医药环境观察报告+药品市场调研报告+药品靶点研究报告+医药白皮书;数据来源于药融云自产报告&药品报告自动生成系统(最新日期)。①报告下载途径药品报告:药融云医药

Linux文件操作基础:快速入门指南和实用技巧

文章目录linux文件操作基础I.查看文件和目录1.`ls`命令用法`ls`命令详细介绍`pwd`命令用法:`pwd`命令详细介绍`cd`命令用法:`cd`命令详细介绍:II.创建文件和目录`touch`命令用法`touch`命令详细介绍III.复制、移动和重命名`cp`命令用法`cp`命令详细介绍IV.删除文件和目录

无人机(UAV)隐蔽通信(covert communication)的联合功率分配和轨迹设计

文章目录摘要Introduction本文是JointPowerAllocationandTrajectoryDesignforUAV-EnabledCovertCommunication一文的阅读笔记摘要在本文中,我们研究了无人机(UAV)网络中的隐蔽通信,其中无人机将信息传输给多个地面用户(GU),而不会被隐藏探测器

热文推荐