Redis的主从复制,哨兵和Cluster集群

2023-09-13 11:50:23

一、Redis的高可用 

1.1 redis高可用的概念

在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。

高可用的计算公式是1-(宕机时间)/(宕机时间+运行时间)有点类似与网络传输的参数误码率,我们用9的个数表示可用性:

2个9:99%,一年内宕机时长:1%×365天=3.6524天=87.6h

4个9:99.99%,一年内宕机时长:0.01%×365天=52.56min

5个9:99.999%,一年内宕机时长:0.001%*365天=5.265min

11个9:几乎一年宕机时间只有几秒钟

但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等。

1.2 Redis的高可用技术 

在Redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和cluster集群,下面分别说明它们的作用,以及解决了什么样的问题。

  • 持久化: 持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。

  • 主从复制: 主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份(和同步),以及对于读操作的负载均衡和简单的故障恢复。

    • 缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
  • 哨兵: 在主从复制的基础上,哨兵实现了自动化的故障恢复。(主挂了,找一个从成为新的主,哨兵节点进行监控)

    • 缺陷:写操作无法负载均衡;存储能力受到单机的限制。
  • Cluster集群: 通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。(6台起步,成双成对,3主3从)

二、Redis主从复制

主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(slave);数据的复制是单向的,只能由主节点到从节点。

默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

2.1 主从复制的作用

  • 数据冗余: 主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
  • 故障恢复: 当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
  • 负载均衡: 在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
  • 高可用基石: 除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

2.2 主从复制流程

1)若启动一个slave机器进程,则它会向Master机器发送一个sync command命令,请求同步连接。

(2)无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中.

(3)后台进程完成缓存操作之后,Master机器就会向slave机器发送数据文件,slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给slave端机器。若slave出现故障导致宕机,则恢复正常后会自动重新连接。

(4)Master机器收到slave端机器的连接后,将其完整的数据文件发送给slave端机器,如果Mater同时收到多个slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的slave端机器,确保所有的slave端机器都正常。

三、Redis一主二从的部署 

实验组件

主从redis的版本号IP地址
masterredis-5.0.7192.168.73.105
slave1redis-5.0.7192.168.73.106
slave2redis-5.0.7192.168.73.107

实验具体步骤 

 实验前准备好三台源码编译安装好的redis虚拟机

步骤一:修改master节点的配置文件 

 vim /etc/redis/6379.conf 
 bind 0.0.0.0                      #70行,修改监听地址为0.0.0.0(生产环境中,尤其是多网卡最好填写物理网卡的IP)
 daemonize yes                     #137行,开启守护进程,后台启动 
 logfile /var/log/redis_6379.log   #172行,指定日志文件存放目录
 dir /var/lib/redis/6379           #264行,指定工作目录
 appendonly yes                    #700行,开启AOF持久化功能

/etc/init.d/redis_6379 restart     #重启redis服务

步骤二:修改slave节点的配置文件  

#修改slave1的配置文件
vim /etc/redis/6379.conf 
 bind 0.0.0.0                        #70行,修改监听地址为0.0.0.0(生产环境中需要填写物理网卡的IP)
 daemonize yes                       #137行,开启守护进程,后台启动
 logfile /var/log/redis_6379.log     #172行,指定日志文件目录
 dir /var/lib/redis/6379             #264行,指定工作目录
 replicaof 192.168.73.105 6379       #288行,指定要同步的Master节点的IP和端口
 appendonly yes                      #700行,修改为yes,开启AOF持久化功能

#将配置文件传给slave2
scp /etc/redis/6379.conf 192.168.73.107:/etc/redis/

/etc/init.d/redis_6379 restart  #重启redis
netstat -natp | grep redis      #查看主从服务器是否已建立连接

 

 实验测试 

master写入数据 

127.0.0.1:6379> keys *
 
127.0.0.1:6379> set name zhangsan
 
127.0.0.1:6379> get name 

两个从库查看数据库  

 

 四、Redis哨兵模式

主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。

哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。

哨兵模式的组成:

哨兵节点: 哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。

数据节点: 主节点和从节点都是数据节点。

4.1  哨兵模式的作用 

  • 监控: 哨兵会不断地检查主节点和从节点是否运作正常。
  • 自动故障转移: 当主节点不能正常工作时,哨兵会开始自动故障转移操,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。
  • 通知(提醒): 哨兵可以将故障转移的结果发送给客户端。

此外:哨兵节点也可以是单独独立在其他的主机上,并不需要一定安装redis主从复制的节点服务器上 

4.2 故障转移机制 

1、由哨兵节点定期监控发现主节点是否出现了故障

每个哨兵节点每隔1秒会问主节点、从节点及其它哨兵节点发送一次ping命令做一次心检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。 

2、当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3、由leader哨兵节点执行故障转移,过程如下:

  • 将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
  • 若原主节点恢复也变成从节点,并指向新的主节点;
  • 通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作

4.3 哨兵模式中主节点的选拔 

1.过滤掉不健康的(己下线的),没有回复哨兵ping响应的从节点。

2.选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)

3.选择复制偏移量最大,也就是复制最完整的从节点。

哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式。

五、Redis哨兵模式的部署

实验组件部署

主从redis的版本号IP地址哨兵点
masterredis-5.0.7192.168.73.105Sentinel 1
slave1redis-5.0.7192.168.73.106Sentinel 2
slave2redis-5.0.7192.168.73.107Sentinel 3

实验具体操作步骤 

 在redis主从复制的基础上进行哨兵模式的部署

步骤一:修改哨兵节点的配置文件

哨兵的的配置文件是redis软件中自带的配置 

vim /opt/redis-5.0.7/sentinel.conf
......
protected-mode no                #17行,取消注释,关闭保护模式
port 26379                       #21行,Redis哨兵默认的监听端口
daemonize yes                    #26行,指定sentinel为后台启动
logfile "/var/log/sentinel.log"  #36行,指定日志文件存放路径
dir "/var/lib/redis/6379"        #65行,指定数据库存放路径
sentinel monitor mymaster 192.168.73.105 6379 2  #84行,修改
#指定该哨兵节点监控192.168.73.105:6379这个主节点,该主节点的名称是mymaster。
#最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移

sentinel down-after-milliseconds mymaster 3000  #113行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000  #146行,同一个sentinel对同一个master两次failover之间的间隔时间(180秒)

#传给两外2个哨兵节点
scp /opt/redis-5.0.7/sentinel.conf  192.168.73.106:/opt/redis-5.0.7/
scp /opt/redis-5.0.7/sentinel.conf  192.168.73.107:/opt/redis-5.0.7/ 

步骤二:启动 哨兵模式,查看其监控状态 

#启动三台哨兵
cd /opt/redis-5.0.7/
redis-sentinel sentinel.conf &
 
#在哨兵节点查看监控状态
[root@localhost ~]# redis-cli -p 26379 info Sentinel

实验测试 

 故障模拟
#在Master 上查看redis-server进程号:
[root@localhost ~]# ps -ef | grep redis
​
#杀死 Master 节点上redis-server的进程号
[root@localhost ~]# kill -9 pid号      #Master节点上redis-server的进程号
[root@localhost ~]# netstat -natp | grep redis

 

 实验结果

[root@localhost redis-5.0.7]# tail -f /var/log/sentinel.log
 
 
#新master进行键值对的创建
[root@localhost redis-5.0.7]# redis-cli 
127.0.0.1:6379> set newname lisi
OK
127.0.0.1:6379> get newname
"lisi"
127.0.0.1:6379> 

测试结果:  

六、Redis 集群模式 

集群,即Redis Cluster,是Redis3.0开始引入的分布式存储方案。

集群由多个节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。

6.1 集群的作用

(1)数据分区: 数据分区(或称数据分片)是集群最核心的功能。

  • 集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
  • Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。

(2)高可用: 集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

 通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

6.2 Redis集群的数据分片

Redis集群引入了哈希槽的概念。

Redis集群有16384个哈希槽(编号0-16383)。

集群的每个节点负责一部分哈希槽。

每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作。

以3个节点组成的集群为例:

  • 节点A包含0到5460号哈希槽
  • 节点B包含5461到10922号哈希槽
  • 节点c包含10923到16383号哈希槽

七、Redis集群的部署 

真实生产环境中,redis的cluster集群至少需要六台服务器才能实现 ,如果因为电脑性能问题

可以尝试redis多实例部署

实验组件的部署 

实验的具体步骤 

步骤一:修改主配置文件 

 cd /opt/redis-5.0.7/
vim redis.conf
......
bind 192.168.73.105                    #69行,修改为监听自己的物理网卡IP
protected-mode no                         #88行,修改为no,关闭保护模式
port 6379                                 #92行,redis默认监听端口
daemonize yes                             #136行,开启守护进程,以独立进程启动
appendonly yes                            #700行,修改为yes,开启AOF持久化
cluster-enabled yes                       #832行,取消注释,开启群集功能
cluster-config-file nodes-6379.conf       #840行,取消注释,群集名称文件设置
cluster-node-timeout 15000                #846行,取消注释,群集超时时间设置


#将文件传给另外5个节点,之后每个节点要修改监听地址为主机本身的监听地址
[root@localhost redis-5.0.7]# scp redis.conf 192.168.73.106:`pwd`
[root@localhost redis-5.0.7]# scp redis.conf 192.168.73.107:`pwd`
[root@localhost redis-5.0.7]# scp redis.conf 192.168.73.109:`pwd`
[root@localhost redis-5.0.7]# scp redis.conf 192.168.73.110:`pwd`
[root@localhost redis-5.0.7]# scp redis.conf 192.168.73.111:`pwd`
 

步骤二: 进行redis的启动和集群启动

 集群模式启动时:注意  /etc/initid/redis_6379    不能启动(个体redis)

 cd /opt/redis-5.0.7/
redis-server redis.conf   #启动redis节点
 
##六个主机分为三组,三主三从,前面的做主节点后面的做从节点下免交互的时候需要输入yes才可以创建 "-replicas 1"表示每个主节点有一个从节点
#前三台为Master,后三台为Slave
 
redis-cli  -h 192.168.73.105 --cluster create 192.168.73.105:6379 192.168.73.106:6379 192.168.73.107:6379 192.168.73.109:6379 192.168.73.110:6379 192.168.73.111:6379 --cluster-replicas 1

集群模式的测试  

#集群模式要求用物理网卡登录
redis-cli -h 192.168.73.105   -c
 
#查看集群的hash槽和主从关系
cluster slots 

更多推荐

Jmeter安装与测试

目录一:JMeter简介:二:JMeter安装与配置三:JMeter主要原件一:JMeter简介:JMeter,一个100%的纯Java桌面应用,由Apache组织的开放源代码项目,它是功能和性能测试的工具。具有高可扩展性、支持Web(HTTP/HTTPS)、SOAP、FTP、JAVA等多种协议的特点。官方网站:htt

方案:浅析利用AI智能识别与视频监控技术打造智慧水产养殖监管系统

一、方案背景针对目前水产养殖集约、高产、高效、生态、安全的发展需求,基于智能传感、智慧物联网、人工智能、视频监控等技术打造智慧水产系统,成为当前行业的发展趋势。传统的人工观察水产养殖方式较为单一,难以及时发现人员非法入侵、偷盗、偷钓、水质污染等管理问题。二、方案概述TSINGSEE青犀视频智慧水产养殖方案主要是围绕视频

TDengine 与煤矿智能 AI 视频管理系统实现兼容性互认

煤矿行业是一个充满危险和复杂性的领域,具备产业规模大、分布地域广、安全性要求高等特点,为了实现智能化预警、预测等目的,煤矿企业纷纷采用现代化的技术来提高安全性、生产效率和管理水平。煤矿智能AI视频管理系统可以助力企业更好地进行矿工工作环境监测、异常情况报警等工作,从而提高安全性并减少事故风险,在煤矿项目中已经得到了广泛

做接口测试如何上次文件

【软件测试面试突击班】如何逼自己一周刷完软件测试八股文教程,刷完面试就稳了,你也可以当高薪软件测试工程师(自动化测试)在日常工作中,经常有上传文件功能的测试场景,因此,本文介绍两种主流编写上传文件接口测试脚本的方法。首先,要知道文件上传的一般原理:客户端根据文件路径读取文件内容,将文件内容转换成二进制文件流的格式传输给

PASCAL VOC2012数据集详细介绍

PASCALVOC2012数据集详细介绍0、数据集介绍2、PascalVOC数据集目标类别3、数据集下载与目录结构4、目标检测任务5、语义分割任务6、实例分割任务7、类别索引与名称对应关系0、数据集介绍2、PascalVOC数据集目标类别在PascalVOC数据集中主要包含20个目标类别,下图展示了所有类别的名称以及所

关于String、StringBuffer、StringBuilder

1.String可以被继承吗?String类由final修饰,所以不能被继承。扩展阅读在Java中,String类被设计为不可变类,主要表现在它保存字符串的成员变量是final的。Java9之前字符串采用char[]数组来保存字符,即privatefinalchar[]value;Java9做了改进,采用byte[]数

【人工智能】企业如何使用 AI与人工智能的定义、研究价值、发展阶段的深刻讨论

前言人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是新一轮科技革命和产业变革的重要驱动力量。📕作者简介:热爱跑步的恒川,致力于C/C++、Java、Python等多编程语言,热爱跑步,喜爱音乐

Maven 直接依赖、间接依赖、依赖冲突、依赖仲裁

文章目录直接依赖和间接依赖依赖冲突Maven的依赖仲裁最短路径优先先声明优先手动解决依赖冲突直接依赖和间接依赖在项目中直接引入的依赖叫做直接依赖,而那些被动引入的就叫间接依赖比如上图中,A是我们的项目,我们在项目中直接引入了B模块,所以B和A的关系就是直接依赖,而B工程内部引入了C,所以B和C也是直接依赖关系,如果B工

Python编程指南:利用HTTP和HTTPS适配器实现智能路由

嗨,爬虫大佬们!今天我要为大家分享一篇关于如何利用HTTP和HTTPS适配器来实现智能路由的Python编程指南。在现代互联网应用中,路由功能起着至关重要的作用,而利用Python编程语言实现智能路由则可以为我们的应用带来更高的灵活性和性能优化。接下来,让我们一起深入了解这个令人激动的主题吧!1、了解HTTP和HTTP

简单易上手,亚马逊云科技Amazon CodeWhisperer个性化辅助功能成为开发者好帮手

AmazonCodeWhisperer介绍AmazonCodeWhisperer是亚马逊云科技出品的一款基于机器学习的通用代码生成器,可实时提供代码建议。类似Cursor和GithubCopilot编码工具。在编写代码时,它会自动根据您现有的代码和注释生成建议。从单行代码建议到完整的函数,它可为您提供各种大小和范围的个

关于React Hooks的面试题及其答案

请解释一下ReactHooks是什么,以及它的优点和缺点是什么?Hooks是React16.8版本引入的一种新特性,它允许你在不写class的情况下操作state和其他React特性。Hooks是一种特殊的函数,可以让你“钩入”React的特性。它的优点是让编写组件更简单方便,同时可以自定义hook把公共的逻辑提取出来

热文推荐