【100天精通Python】Day61:Python 数据分析_Pandas可视化功能:绘制饼图,箱线图,散点图,散点图矩阵,热力图,面积图等(示例+代码)

2023-09-13 14:55:10

目录

1 Pandas 可视化功能

2 Pandas绘图实例

2.1 绘制线图

2.2 绘制柱状图

2.3 绘制随机散点图

2.4 绘制饼图

2.5 绘制箱线图A

2.6 绘制箱线图B

2.7 绘制散点图矩阵

 2.8 绘制面积图

2.9 绘制热力图

 2.10 绘制核密度估计图


1 Pandas 可视化功能

pandas是一个强大的数据分析库,提供了一些可视化工具来帮助用户更好地理解和展示数据。以下是pandas可视化工具的一些常见功能:

1. 折线图:通过plot()函数可以绘制折线图,展示数据随时间或其他变量的变化趋势。

2. 散点图:使用scatter()函数可以绘制散点图,在二维平面上展示两个变量之间的关系。

3. 条形图:使用bar()函数可以绘制条形图,用于比较不同类别或组的数值大小。

4. 直方图:使用hist()函数可以绘制直方图,用于展示数值型数据的分布情况。

5. 饼图:使用pie()函数可以绘制饼图,展示不同类别的占比情况。

6. 箱线图:使用boxplot()函数可以绘制箱线图,展示数值型数据的分布特征、离群值等。

Pandas 是一个用于数据处理和分析的流行库,它提供了一些内置的可视化功能,通常基于 Matplotlib 这个底层库。

  • 绘制线图:

df['column_name'].plot(kind='line')

绘制柱状图:

df['column_name'].plot(kind='bar')

绘制散点图:

df.plot(x='x_column', y='y_column', kind='scatter')

hist()函数hist()函数用于绘制直方图,以显示数据的分布和频率。

df['column_name'].hist(bins=10)

boxplot()函数boxplot()函数用于绘制箱线图,显示数据的分位数和离群值。

df.boxplot(column='column_name')

scatter_matrix()函数scatter_matrix()函数用于绘制多个变量之间的散点图矩阵,有助于了解变量之间的关系。

from pandas.plotting import scatter_matrix

scatter_matrix(df, alpha=0.5, figsize=(8, 8), diagonal='hist')

plotting.scatter_matrix()函数:这是一个更高级的散点图矩阵绘制函数,可以自定义每个子图的属性。

from pandas.plotting import scatter_matrix

scatter_matrix(df, alpha=0.5, figsize=(8, 8), diagonal='kde', color='red')

plot.barh()函数plot.barh()函数用于绘制水平柱状图。

df['column_name'].plot(kind='barh')

plot.pie()函数plot.pie()函数用于绘制饼图,用于显示数据的占比。

df['column_name'].plot(kind='pie', autopct='%1.1f%%')

plot.area()函数plot.area()函数用于绘制堆叠面积图,显示数据的累积变化趋势。

df.plot.area()

plot.kde()函数plot.kde()函数用于绘制核密度估计图,显示数据的概率密度分布。


2 Pandas绘图实例

2.1 绘制线图

import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
# 创建数据
data = {'年份': [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017],
        '销售额': [100, 150, 120, 180, 200, 250, 300, 280]}

# 转换为DataFrame格式
df = pd.DataFrame(data)

# 绘制折线图
plt.plot(df['年份'], df['销售额'], marker='o')

# 设置x轴和y轴标签、标题
plt.xlabel('年份')
plt.ylabel('销售额')
plt.title('销售额变化趋势')

# 添加图例
plt.legend(['销售额'])

# 显示图形
plt.show()

当使用Pandas绘制柱状图、散点图和饼图时,您可以使用plot()函数的不同kind参数来指定要绘制的图表类型。

2.2 绘制柱状图

import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 替换为您系统中支持的字体
# 创建一个示例DataFrame
data = {'Category': ['A', 'B', 'C', 'D'],
        'Values': [10, 15, 7, 12]}

df = pd.DataFrame(data)

# 绘制柱状图
df.plot(x='Category', y='Values', kind='bar', title='柱状图')
plt.xlabel('类别')
plt.ylabel('数值')
plt.show()

2.3 绘制随机散点图

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 替换为您系统中支持的字体
# 生成随机数据
np.random.seed(0)  # 设置随机种子以确保可重复性
num_points = 100
x = np.random.rand(num_points)  # 随机生成x坐标
y = np.random.rand(num_points)  # 随机生成y坐标
colors = np.random.rand(num_points)  # 随机生成颜色值

# 创建DataFrame
data = {'X': x, 'Y': y, 'Color': colors}
df = pd.DataFrame(data)

# 绘制散点图
plt.figure(figsize=(8, 6))  # 设置图形大小
plt.scatter(x='X', y='Y', c='Color', data=df, cmap='viridis', alpha=0.7)
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.title('随机散点图')
plt.colorbar(label='颜色')
plt.show()

上述示例中,我们首先使用NumPy生成了一些随机的x和y坐标数据,以及随机的颜色值。然后,我们将这些数据放入一个Pandas DataFrame 中,并使用Matplotlib绘制了散点图。颜色使用了色彩映射(cmap),并添加了颜色条(colorbar)以显示颜色映射的对应关系。

2.4 绘制饼图

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 替换为您系统中支持的字体


# 创建一个示例DataFrame,包含不同类别的值
data = {'Category': ['A', 'B', 'C', 'D'],
        'Values': [10, 15, 7, 12]}

df = pd.DataFrame(data)

# 指定用于饼图的数值列和标签列
values = df['Values']
labels = df['Category']

# 绘制饼图
plt.figure(figsize=(6, 6))  # 设置图形大小
df.plot(y='Values', kind='pie', labels=df['Category'], autopct='%1.1f%%', title='饼图')  # 绘制饼图
plt.title('饼图')  # 设置图表标题

# 显示图表
plt.axis('equal')  # 使饼图保持圆形
plt.show()

在上述示例中,首先创建了一个包含类别和对应数值的DataFrame。然后,使用plt.pie()函数来绘制饼图,其中values包含数值数据,labels包含饼图的标签。autopct参数用于显示百分比标签,startangle参数用于指定饼图的起始角度。最后,使用plt.axis('equal')确保饼图保持圆形。

2.5 绘制箱线图A

import pandas as pd
import matplotlib.pyplot as plt
import random
plt.rcParams['font.sans-serif'] = ['SimHei']


# 创建示例数据集
data = {
    'Product_A': [random.randint(50, 100) for _ in range(50)],
    'Product_B': [random.randint(40, 90) for _ in range(50)],
    'Product_C': [random.randint(60, 110) for _ in range(50)],
    'Product_D': [random.randint(30, 70) for _ in range(50)],
    'Product_E': [random.randint(20, 80) for _ in range(50)],
    'Product_F': [random.randint(70, 120) for _ in range(50)]
}

df = pd.DataFrame(data)

# 使用boxplot()函数绘制箱线图
df.boxplot(column=['Product_A', 'Product_B', 'Product_C', 'Product_D', 'Product_E', 'Product_F'])

# 添加标题和标签
plt.title('不同产品销售数据箱线图')
plt.ylabel('销售数量')

# 显示图形
plt.show()

         在这个示例中,我们创建了一个包含6种产品的示例DataFrame df,每种产品有50个销售数据点。然后,我们使用boxplot()函数绘制了这6种产品的箱线图。

        箱线图将展示每种产品的销售数量分布情况,包括中位数、四分位数、离群值等信息。通过比较不同产品的箱线图,您可以更好地了解它们的销售数据分布,以便进行进一步的分析和决策。这种可视化方法可以帮助您分析潜在的销售趋势和异常情况。

2.6 绘制箱线图B

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #替换为系统中支持的字体


# 创建一个示例数据集,包括三个组的数据
data = pd.DataFrame({
    'Group1': np.random.normal(0, 1, 100),
    'Group2': np.random.normal(2, 1, 100),
    'Group3': np.random.normal(1, 1, 100),
    'Group4': np.random.normal(3, 1, 100)
})

# 使用boxplot()函数绘制箱线图,指定显示的列和参数
data.boxplot(column=['Group1', 'Group2', 'Group3', 'Group4'],
             notch=True,  # 添加缺口以估计中位数的不确定性
             sym='o',  # 设置异常值标记为圆圈
             vert=False,  # 水平显示箱线图
             patch_artist=True,  # 填充箱体颜色
             showmeans=True,  # 显示均值点
             meanline=True,  # 显示均值线
             widths=0.5  # 箱体宽度
             )

# 添加标题和标签
plt.title('箱线图示例')
plt.xlabel('值')
plt.ylabel('分组')

# 显示图形
plt.show()

在这个示例中,我们创建了一个包含四个组的示例DataFrame data,每个组有100个随机数。然后,我们使用boxplot()函数绘制箱线图,并自定义了多个参数:

  • notch=True:在箱体中添加缺口以估计中位数的不确定性。
  • sym='o':将异常值标记为圆圈。
  • vert=False:水平显示箱线图。
  • patch_artist=True:填充箱体颜色。
  • showmeans=True:显示均值点。
  • meanline=True:显示均值线。
  • widths=0.5:设置箱体宽度。

其中每个箱体表示一个组的数据分布情况。箱线图还显示了中位数、均值点和异常值。这种可视化工具有助于比较多个组的数据分布,并检测异常值。

2.7 绘制散点图矩阵

pandas.plotting.scatter_matrix()函数用于绘制多个变量之间的散点图矩阵,帮助您了解各个变量之间的关系。这个函数可以自定义每个子图的属性,包括颜色、标记、直方图和核密度估计等。下面是一个详细的示例:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pandas.plotting import scatter_matrix
plt.rcParams['font.sans-serif'] = ['SimHei']
# 创建一个包含多个变量的示例数据集
data = pd.DataFrame(np.random.randn(100, 4), columns=['A', 'B', 'C', 'D'])

# 使用scatter_matrix()函数绘制散点图矩阵
# 主要参数包括DataFrame对象,alpha(透明度),diagonal(对角线上的图表类型),color(颜色),marker(标记类型)等
scatter_matrix(data, alpha=0.8, figsize=(8, 8), diagonal='hist', color='blue', marker='o')

# 添加标题
plt.suptitle('散点图矩阵示例')

# 显示图形
plt.show()

在这个示例中,我们首先创建了一个包含四个随机变量的示例DataFrame data。然后,我们使用scatter_matrix()函数绘制散点图矩阵,指定了一些参数:

  • alpha参数设置透明度,这样可以看到重叠点。
  • figsize参数设置图形的大小。
  • diagonal参数设置对角线上的图表类型,这里使用直方图。
  • color参数设置散点的颜色。
  • marker参数设置散点的标记类型。

最后,我们添加了标题并显示图形。

 2.8 绘制面积图

面积图 (Area Plot)

面积图用于可视化时间序列或有序数据的变化趋势,通常用于显示数据的累积变化

import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']


# 创建示例数据集
data = {
    'Year': [2000, 2001, 2002, 2003, 2004],
    'Product_A': [100, 120, 140, 160, 180],
    'Product_B': [80, 90, 110, 130, 150]
}

df = pd.DataFrame(data)

# 使用plot()函数创建面积图
plt.figure(figsize=(8, 6))
plt.stackplot(df['Year'], df['Product_A'], df['Product_B'], labels=['Product_A', 'Product_B'], alpha=0.7)
plt.xlabel('年份')
plt.ylabel('销售数量')
plt.title('面积图示例')
plt.legend(loc='upper left')
plt.show()

         在上述示例中,我们首先创建了一个包含年份和两种产品销售数量的示例DataFrame。然后,使用stackplot()函数创建面积图,alpha参数设置透明度,labels参数设置图例标签,legend()函数用于显示图例。 

2.9 绘制热力图

热力图 (Heatmap)

热力图用于可视化矩阵数据中各个元素之间的关系,通常通过颜色来表示数值的大小。

要在Pandas中绘制热力图,通常需要使用辅助库,最常见的是Seaborn和Matplotlib。Seaborn提供了高级的热力图绘制函数,而Matplotlib用于显示图形。以下是如何在Pandas中使用Seaborn和Matplotlib绘制热力图的示例:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

plt.rcParams['font.sans-serif'] = ['SimHei'] #替换为系统中支持的字体

# 创建示例数据集
data = np.random.rand(5, 5)  # 5x5的随机矩阵

# 转换为DataFrame
df = pd.DataFrame(data, columns=['A', 'B', 'C', 'D', 'E'])

# 使用seaborn的heatmap()函数创建热力图
plt.figure(figsize=(8, 6))
sns.heatmap(df, annot=True, cmap='coolwarm', linewidths=.5)
plt.title('热力图示例')
plt.show()

 在上述示例中,我们首先创建了一个随机矩阵,并将其转换为Pandas DataFrame。然后,使用Seaborn的heatmap()函数来绘制热力图。参数annot=True用于在图表上显示数值标签,cmap用于设置颜色映射,linewidths用于设置单元格之间的间隔线宽度。


 2.10 绘制核密度估计图

 plot.kde()函数plot.kde()函数用于绘制核密度估计图,显示数据的概率密度分布。

import pandas as pd
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei'] #替换为系统中支持的字体

# 创建示例数据集
data = {'Values': [10, 15, 13, 18, 25, 12, 22, 27, 16, 21]}

df = pd.DataFrame(data)

# 使用plot.kde()函数创建核密度估计图
df['Values'].plot.kde()
plt.xlabel('数值')
plt.ylabel('概率密度')
plt.title('核密度估计图示例')
plt.show()

在这个示例中,我们首先创建了一个包含示例数据的DataFrame df,然后使用plot.kde()函数绘制核密度估计图。这个图表显示了数据的概率密度分布,它是一个平滑的曲线,代表了数据在不同数值上的概率密度。

更多推荐

NLP(5)--自编码器

目录一、自编码器1、自编码器概述2、降噪自编码器二、特征分离三、自编码器的其他应用1、文本生成2、图像压缩3、异常检测四、VAE1、极大似然估计2、GSM3、GMM4、VAE的引出5、VAE一、自编码器1、自编码器概述自编码器(Auto-Encoder)作为无监督学习的一种算法,自编码器中包含Encoder和Decod

UEFI 安装 Debian12 Linux 物理机虚拟机VMware通用

文章目录前言⭐前置虚拟机物理机安装流程选择安装方式语言及键盘选择网络选择创建用户系统磁盘分区新旧磁盘分区方式BOOT分区SWAP分区根分区安装过程中其他选项选择软件包安装流程末前言⭐物理机和虚拟机安装仅有设置UFFI引导的差别、这里前置为设置UEFI引导。安装步骤大同小异,理解思路即可轻松完成安装配置。前置虚拟机1.首

Maven的介绍和使用

Maven的作用项目构建依赖管理:避免资源间版本冲突问题统一开发结构:提供统一的项目结构Maven的使用下载完压缩包之后放在合适的目录下,其中apache-maven-3.8.8文件夹是安装的maven,下面的repository是本地仓库,其中要修改setting.xml下的仓库路径,设置阿里云镜像。将这里的路径改为

【C++】AVL树

AVL树1.AVL树的概念2.AVL树的实现2.1节点的定义2.2插入2.3是否是AVL树3.AVL树与红黑树1.AVL树的概念AVL树是一棵二叉搜索树,但它的每个节点的左右子树的高度差的绝对值不超过1,且它的子树也是平衡二叉树。左右子树的高度差也叫平衡因子,平衡因子=右子树叶的高度-左子树的高度。将AVL树与满二叉树

代理IP与Socks5代理:跨界电商智能爬虫的引擎与安全壁垒

摘要:随着跨界电商的蓬勃发展,数据采集和隐私保护成为企业的关键挑战。本文将深入探讨代理IP和Socks5代理在跨界电商中的应用,以及它们在智能爬虫技术中的关键作用,为企业提供数据引擎和安全防护的解决方案。第一部分:背景介绍跨界电商已成为全球贸易的重要组成部分,为企业提供了巨大的市场机会。然而,要在这个竞争激烈的领域中脱

单片机论文参考:4、基于单片机的智能避障小车

第一章引言随着汽车工业的快速发展,关于汽车的研究也越来越受到人们的关注。智能汽车概念的提出给汽车产业带来机遇也带了挑战。汽车的智能化必将是未来汽车产业发展的趋势,在这样的背景下,我们开展了基于超声波和红外线的智能小车的避障研究。超声波作为智能车避障的一种重要手段,以其避障实现方便,计算简单,易于做到实时控制,测量精度也

12:STM32---RTC实时时钟

目录一:时间相关1:Unix时间戳2:UTC/GMT3:时间戳转化二:BKP1:简历2:基本结构三:RTC1:简历2:框图3:RTC基本结构4:RTC操作注意四:案例A:读写备份寄存器1:连接图2:步骤3:代码B:实时时钟1:连接图2:函数介绍3:代码一:时间相关1:Unix时间戳Unix时间戳(UnixTimesta

基于TensorFlow+CNN+协同过滤算法的智能电影推荐系统——深度学习算法应用(含微信小程序、ipynb工程源码)+MovieLens数据集(五)

目录前言总体设计系统整体结构图系统流程图运行环境模块实现1.模型训练1)数据集分析2)数据预处理3)模型创建4)模型训练5)获取特征矩阵2.后端Django1)路由文件2)视图层文件3)项目设置文件相关其它博客工程源代码下载其它资料下载前言本项目专注于MovieLens数据集,并采用TensorFlow中的2D文本卷积

【业务功能篇112】Springboot + Spring Security 权限管理-登录模块开发实战

合家云社区物业管理平台4.权限管理模块研发4.3登录模块开发前台和后台的认证授权统一都使用SpringSecurity安全框架来实现。首次登录过程如下图:4.3.1生成图片校验码4.3.1.1导入工具类(1)导入Constants常量类/***通用常量类*@authorspikeCong*@date2023/5/3**

apache poi 实现Excel 下拉联动

原文链接:Javapoi实现Excel下拉联动Java实现Excel下拉联动,本示例中实现了省市区乡镇村联动。适用于03版本Excel。依赖<!--https://mvnrepository.com/artifact/org.apache.poi/poi--><dependency><groupId>org.apach

一次ES检索的性能优化经验记录

优化功能:统一检索能力,为各服务所调用。该接口并发压力大,压测效果不理想。初步2k线程两台压测机预发环境压测结果两pod下为400qps左右,单pod平均qps200,响应时间在五分钟之后达到了峰值,平响达到几十秒开外。压测环境:内网环境,过网关压测,压测链路:网关→后台服务。一、优化初期出现这样的情况,是意想之外的,

热文推荐