线性代数的本质(九)——二次型与合同

2023-09-13 22:40:00

二次型与合同

二次型与标准型

Grant:二次型研究的是二次曲面在不同基下的坐标变换

由解析几何的知识,我们了解到二次函数的一次项和常数项只是对函数图像进行平移,并不会改变图形的形状和大小。以一元二次函数为例

在这里插入图片描述

而二次函数的二次项控制函数图像的大小和形状。以二元二次函数为例,观察 f ( x , y ) = 1 f(x,y)=1 f(x,y)=1 的截面图形

在这里插入图片描述

线性代数主要研究这些图形的二次项,通过线性变换使二次曲面变得规范简洁。

定义 n n n 元二次齐次多项式
f ( x 1 , ⋯   , x n ) = a 11 x 1 2 + 2 a 12 x 1 x 2 + ⋯ + 2 a 1 n x 1 x n + a 22 x 2 2 + 2 a 23 x 2 x 3 + ⋯ + 2 a 2 n x 2 x n + a n n x n 2 \begin{aligned} f(x_1,\cdots,x_n)=&a_{11}x_1^2+2a_{12}x_1x_2+\cdots+2a_{1n}x_1x_n \\ &+a_{22}x_2^2+2a_{23}x_2x_3+\cdots+2a_{2n}x_2x_n \\ &+a_{nn}x_n^2 \end{aligned} f(x1,,xn)=a11x12+2a12x1x2++2a1nx1xn+a22x22+2a23x2x3++2a2nx2xn+annxn2
称为二次型(quadratic form),这其实是二次曲面在一组坐标基下的解析表达式。

利用矩阵乘法,二次型可简记为
f = [ x 1 x 2 ⋯ x n ] [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] [ x 1 x 2 ⋮ x n ] = x T A x f=\begin{bmatrix}x_1&x_2&\cdots&x_n\end{bmatrix} \begin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n} \\ a_{21}&a_{22}&\cdots&a_{2n} \\ \vdots&\vdots&\ddots&\vdots \\ a_{m1}&a_{m2}&\cdots&a_{mn} \\ \end{bmatrix} \begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix} =\mathbf x^TA\mathbf x f=[x1x2xn] a11a21am1a12a22am2a1na2namn x1x2xn =xTAx
其中 A A A 是对称阵,其主对角线元素是平方项的系数,其余元素 a i j = a j i a_{ij}=a_{ji} aij=aji 是二次项 x i x j x_ix_j xixj 系数 2 a i j 2a_{ij} 2aij 的一半。显然,对称矩阵 A A A 与二次型 f f f 是相互唯一确定的。矩阵 A A A 及其秩分别称为二次型的矩阵和秩。

在某些情况下,没有交叉乘积项的二次型会更容易使用,即通过线性变换 x = C y \mathbf x=C\mathbf y x=Cy 来消除交叉乘积项
f = x T A x = x = C y y T ( C T A C ) y = y T Λ y f=\mathbf x^TA\mathbf x\xlongequal{\mathbf x=C\mathbf y}\mathbf y^T(C^TAC)\mathbf y=\mathbf y^T\Lambda\mathbf y f=xTAxx=Cy yT(CTAC)y=yTΛy
由于矩阵 A A A 是对称阵,由上节对称矩阵的对角化知道,总有正交矩阵 C C C,使
C − 1 A C = C T A C = Λ C^{-1}AC=C^TAC=\Lambda C1AC=CTAC=Λ
Λ \Lambda Λ 的对角线元素是 A A A 的特征值,于是二次型可简化为
f = λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 f=\lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ny_n^2 f=λ1y12+λ2y22++λnyn2
这种只含平方项的二次型称为标准型(standard form)。显然,标准形的矩阵是对角阵。任何二次型都可通过正交变换化为标准型。系数全为 +1,-1或 0 的标准型叫做规范型(gauge form)。

定义:设 A A A B B B n n n阶矩阵,若有 n n n阶可逆矩阵 C C C,使
B = C T A C B=C^TAC B=CTAC
则称矩阵 A A A B B B合同,记为 A ≃ B A\simeq B AB 。显然,合同矩阵即为二次型在不同基下的矩阵。

性质:设矩阵 A ≃ B A\simeq B AB

  1. A A A 为对称阵,则 B B B 也为对称阵;
  2. 合同矩阵的秩相等 rank ( A ) = rank ( B ) \text{rank}(A)=\text{rank}(B) rank(A)=rank(B)

化二次型为标准型的三种方法:

  1. 求矩阵 A A A 的特征值和特征向量化为标准型;
  2. 使用多项式配方法化为标准型;
  3. 使用初等变换法将上方的矩阵 A A A 的位置变为对角阵(左乘为行变换,不影响下方单位阵变换)
    [ A I ] → [ C T A C C ] \begin{bmatrix}A\\I\end{bmatrix}\xrightarrow{}\begin{bmatrix}C^TAC\\C\end{bmatrix} [AI] [CTACC]

例:将椭圆方程 5 x 1 2 − 4 x 1 x 2 + 5 x 2 2 = 48 5x_1^2-4x_1x_2+5x_2^2=48 5x124x1x2+5x22=48 标准化

解:二次型的矩阵 A = [ 5 − 2 − 2 5 ] A=\begin{bmatrix}5&-2\\-2&5\end{bmatrix} A=[5225] ,特征值分别为 3和 7,对应的单位特征向量为
u 1 = [ 1 / 2 1 / 2 ] , u 2 = [ − 1 / 2 1 / 2 ] \mathbf u_1=\begin{bmatrix}1/\sqrt{2}\\1/\sqrt{2}\end{bmatrix}, \mathbf u_2=\begin{bmatrix}-1/\sqrt{2}\\1/\sqrt{2}\end{bmatrix} u1=[1/2 1/2 ],u2=[1/2 1/2 ]
可使用特征向量 u 1 , u 2 \mathbf u_1,\mathbf u_2 u1,u2 作为二次型的标准正交基。正交变换矩阵和标准型矩阵分别为
C = ( u 1 , u 2 ) = [ 1 / 2 − 1 / 2 1 / 2 1 / 2 ] , Λ = [ 3 0 0 7 ] C=(\mathbf u_1,\mathbf u_2)=\begin{bmatrix}1/\sqrt{2}&-1/\sqrt{2}\\1/\sqrt{2}&1/\sqrt{2}\end{bmatrix},\quad \Lambda=\begin{bmatrix}3&0\\0&7\end{bmatrix} C=(u1,u2)=[1/2 1/2 1/2 1/2 ],Λ=[3007]
C C C 可将 A A A 正交对角化, Λ = C T A C \Lambda=C^TAC Λ=CTAC 。所以正交变换 x = P y \mathbf x=P\mathbf y x=Py 得到的标准型为
y T C y = 3 y 1 2 + 7 y 2 2 \mathbf y^TC\mathbf y=3y_1^2+7y_2^2 yTCy=3y12+7y22
新的坐标轴如图

在这里插入图片描述

二次型的分类

定义:设二次型 f = x T A x f=\mathbf x^TA\mathbf x f=xTAx ,如果对于任何 x ≠ 0 \mathbf x\neq 0 x=0

  1. 都有 f ( x ) > 0 f(\mathbf x)>0 f(x)>0,则称 f f f正定二次型,称 A A A正定矩阵
  2. 都有 f ( x ) < 0 f(\mathbf x)<0 f(x)<0,则称 f f f负定二次型,称 A A A负定矩阵
  3. 如果 f ( x ) f(\mathbf x) f(x) 既有正值又有负值,则称为不定二次型

从上节可以看出二次型的标准型是不唯一的,但二次型的秩是唯一的,在化成标准型的过程中是不变的,即标准型中含有的非零平方项的个数是不变的。

惯性定理:二次型和标准型中系数为正的平方项的个数相同,称为正惯性指数;系数为负的平方项的个数也相同,称为负惯性指数;正负惯性指数之差称为符号差

定理

  1. n n n元二次型为正定的充要条件是它的正惯性指数为 n n n
  2. 对称阵 A A A正定    ⟺    \iff 特征值全为正    ⟺    \iff 与单位阵合同 A ≃ I A\simeq I AI
  3. 对称阵 A A A 正定    ⟹    \implies A − 1 A^{-1} A1 正定;

度量矩阵与合同

Grant:合同矩阵为不同坐标系下的度量矩阵。

以二维空间为例,Grant 选用标准坐标系下的基向量 i , j \mathbf i,\mathbf j i,j,度量矩阵
A = [ ⟨ i , i ⟩ ⟨ i , j ⟩ ⟨ j , i ⟩ ⟨ j , j ⟩ ] A=\begin{bmatrix} \lang\mathbf i,\mathbf i\rang&\lang\mathbf i,\mathbf j\rang \\ \lang\mathbf j,\mathbf i\rang&\lang\mathbf j,\mathbf j\rang \end{bmatrix} A=[i,ij,ii,jj,j]

而 Jennifer 使用另外一组基向量 i ′ , j ′ \mathbf i',\mathbf j' i,j,过渡矩阵 P = [ a b c d ] P=\begin{bmatrix} a&b \\ c&d \end{bmatrix} P=[acbd]。即基向量 i ′ , j ′ \mathbf i',\mathbf j' i,j 在 Grant 的坐标系下的坐标表示为
p 1 = [ a c ] , p 2 = [ b d ] \mathbf p_1=\begin{bmatrix} a \\ c \end{bmatrix},\quad \mathbf p_2=\begin{bmatrix} b \\ d \end{bmatrix} p1=[ac],p2=[bd]
因此, Jennifer 的基向量间的内积
⟨ i ′ , i ′ ⟩ = p 1 T A p 1 ⟨ i ′ , j ′ ⟩ = p 1 T A p 2 ⟨ j ′ , i ′ ⟩ = p 2 T A p 1 ⟨ j ′ , j ′ ⟩ = p 2 T A p 2 \lang\mathbf i',\mathbf i'\rang=\mathbf p_1^TA\mathbf p_1\\ \lang\mathbf i',\mathbf j'\rang=\mathbf p_1^TA\mathbf p_2 \\ \lang\mathbf j',\mathbf i'\rang=\mathbf p_2^TA\mathbf p_1 \\ \lang\mathbf j',\mathbf j'\rang=\mathbf p_2^TA\mathbf p_2 i,i=p1TAp1i,j=p1TAp2j,i=p2TAp1j,j=p2TAp2
于是,Jennifer坐标系的度量矩阵
B = [ p 1 T A p 1 p 1 T A p 2 p 2 T A p 1 p 2 T A p 2 ] = [ p 1 T p 2 T ] A [ p 1 p 2 ] = P T A P B=\begin{bmatrix} \mathbf p_1^TA\mathbf p_1&\mathbf p_1^TA\mathbf p_2 \\ \mathbf p_2^TA\mathbf p_1&\mathbf p_2^TA\mathbf p_2 \end{bmatrix}= \begin{bmatrix} \mathbf p_1^T \\ \mathbf p_2^T \end{bmatrix}A\begin{bmatrix} \mathbf p_1 & \mathbf p_2 \end{bmatrix} =P^TAP B=[p1TAp1p2TAp1p1TAp2p2TAp2]=[p1Tp2T]A[p1p2]=PTAP
由此可知,合同矩阵刻画了两度量矩阵间的关系

当然,也可通过两个向量的内积在不同的坐标系中的计算公式获得两个度量矩阵间的关系。由过渡矩阵知道,同一个向量从 Jennifer 的坐标到 Grant 的坐标变换公式为
y = P x \mathbf y=P\mathbf x y=Px
在 Jennifer 的坐标系中,两向量 u , v \mathbf u,\mathbf v u,v 的坐标为 x 1 , x 2 \mathbf x_1,\mathbf x_2 x1,x2 ,度量矩阵为 B B B 。内积计算公式
⟨ u , v ⟩ = x 1 T B x 2 \lang\mathbf u,\mathbf v\rang=\mathbf x_1^TB\mathbf x_2 u,v=x1TBx2
在 Grant 的坐标系中,两向量 u , v \mathbf u,\mathbf v u,v 的的坐标为 y 1 , y 2 \mathbf y_1,\mathbf y_2 y1,y2,度量矩阵为 A A A 。内积计算公式
⟨ u , v ⟩ = y 1 T A y 2 = ( P x 1 ) T A ( P x 2 ) = x 1 T ( P T A P ) x 2 \lang\mathbf u,\mathbf v\rang=\mathbf y_1^TA\mathbf y_2 =(P\mathbf x_1)^TA(P\mathbf x_2)=\mathbf x_1^T(P^TAP)\mathbf x_2 u,v=y1TAy2=(Px1)TA(Px2)=x1T(PTAP)x2
于是,我们得到了两坐标系中度量矩阵的关系
B = P T A P B=P^TAP B=PTAP

更多推荐

加密算法、哈希算法及其区别+国密简介

现代加密算法是信息安全领域中常用的算法,用于保护数据的机密性和完整性。以下是一些常用的现代加密算法:加密算法(EncryptionAlgorithm)目标:加密算法的主要目标是保密性(Confidentiality),它用于将明文数据转换为密文数据,以确保只有授权的用户或实体可以解密和访问数据。加密算法的目标是隐藏信息

跨模态检索论文阅读:(PTP)Position-guided Text Prompt for Vision-Language Pre-training

(PTP)Position-guidedTextPromptforVision-LanguagePre-training视觉语言预训练的位置引导文本提示摘要视觉语言预训练(VLP)已经显示出将图像和文本对统一起来的能力,促进了各种跨模态的学习任务。然而,我们注意到,VLP模型往往缺乏视觉基础/定位能力,这对许多下游任务

【深度学习】 Python 和 NumPy 系列教程(廿四):Matplotlib详解:2、3d绘图类型(10)3D箱线图(3D Box Plot)

目录一、前言二、实验环境三、Matplotlib详解1、2d绘图类型2、3d绘图类型0.设置中文字体1.3D线框图(3DLinePlot)2.3D散点图(3DScatterPlot)3.3D条形图(3DBarPlot)4.3D曲面图(3DSurfacePlot)5.3D等高线图(3DContourPlot)6.3D向量

ICCV 2023 | 沉浸式体验3D室内设计装修,基于三维布局可控生成最新技术

文章链接:https://arxiv.org/abs/2307.09621360°场景布局可控合成(360-degreeImageSynthesis)目前已成为三维计算机视觉领域一个非常有趣的研究方向,在虚拟三维空间中沉浸式的调整和摆放场景对象,可以为用户带来身临其境的感觉,非常适合应用在3D家居模拟装饰领域。本文提出

低代码提案管理应用:发挥员工“金点子”,小提案能有大作用

提案也称合理化建议,是制造企业实施精益管理的重要抓手。制造企业常常采用改善提案制度,引导和鼓励公司全体员工积极主动地提出任何能够改善企业经营质量、提高管理能力的建议。精益管理在日本丰田汽车公司发扬光大,提案管理也是如此。丰田的员工改善提案制度有超过50年的历史,据统计,1986年丰田公司合理化建议数为2,648,710

【SpringMVC】JSR303与拦截器的使用

文章目录一、JSR3031.1JSR303是什么1.2JSR303的好处包括1.3常用注解1.4实例1.4.1导入JSR303依赖1.4.2规则配置1.4.3编写校验方法1.4.4编写前端二、拦截器2.1拦截器是什么2.2拦截器与过滤器的区别2.3.应用场景2.4快速入门2.5.拦截器链2.6登录拦截权限案例2.6.1

Ajax基础笔记

Ajax(AsynchronousJavaScriptandXML)是一种用于在网页上实现异步通信的技术。它使得网页能够在不重新加载整个页面的情况下与服务器进行数据交换,实现了网页的动态更新,提升了用户体验。一、Ajax的工作原理使用JavaScript创建XMLHttpRequest对象,然后使用该对象向服务器发送H

软件测试/测试开发丨利用ChatGPT自动生成测试用例思维导图

点此获取更多相关资料简介思维导图是一种用图形方式表示思维和概念之间关系的工具:有些公司会使用思维导图编写测试用例,这样做的优点是:1.可视化和结构化。2.易于理解,提高效率。而ChatGPT是无法直接生成xmind格式的文件的,但是依然可以通过“曲线救国”的方式去编写思维导图格式的测试用例。实践演练那么如何让ChatG

线程安全问题的原因及解决方案

要想知道线程安全问题的原因及解决方案,首先得知道什么是线程安全,想给出一个线程安全的确切定义是复杂的,但我们可以这样认为:如果多线程环境下代码运行的结果是符合我们预期的,即在单线程环境应该的结果,则说这个程序是线程安全的。例如:使用两个线程分别对同一个变量进行修改,得出的结果与使用一个线程对这个变量进行修改的结果不同,

【推荐】SpringMVC与JSON数据返回及异常处理机制的使用

🎬艳艳耶✌️:个人主页🔥个人专栏:《【推荐】Spring与Mybatis集成整合》⛺️生活的理想,为了不断更新自己!1.JSON在SpringMVC中,JSON数据返回通常是通过使用`@ResponseBody`注解将Java对象转换为JSON格式,并直接发送给客户端。该注解可以用于Controller中的方法,用

【Unity基础】4.动画Animation

【Unity基础】4.动画Animation大家好,我是Lampard~~欢迎来到Unity基础系列博客,所学知识来自B站阿发老师~感谢(一)Unity动画编辑器(1)Animation组件这一张我们要学习如何在unity编辑器中,编辑一个动画。其中所使用到的组件是Animation,那什么是Animation组件呢?

热文推荐