计算机竞赛 深度学习OCR中文识别 - opencv python

2023-09-22 13:53:05

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习OCR中文识别系统 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

在日常生产生活中有大量的文档资料以图片、PDF的方式留存,随着时间推移 往往难以检索和归类 ,文字识别(Optical Character
Recognition,OCR )是将图片、文档影像上的文字内容快速识别成为可编辑的文本的技术。

高性能文档OCR识别系统是基于深度学习技术,综合运用Tensorflow、CNN、Caffe
等多种深度学习训练框架,基于千万级大规模文字样本集训练完成的OCR引擎,与传统的模式识别的技术相比,深度学习技术支持更低质量的分辨率、抗干扰能力更强、适用的场景更复杂,文字的识别率更高。

本项目基于Tensorflow、keras/pytorch实现对自然场景的文字检测及OCR中文文字识别。

2 实现效果

公式检测
在这里插入图片描述
纯文字识别

在这里插入图片描述

3 文本区域检测网络-CTPN

对于复杂场景的文字识别,首先要定位文字的位置,即文字检测。

简介
CTPN是在ECCV
2016提出的一种文字检测算法。CTPN结合CNN与LSTM深度网络,能有效的检测出复杂场景的横向分布的文字,效果如图1,是目前比较好的文字检测算法。由于CTPN是从Faster
RCNN改进而来,本文默认读者熟悉CNN原理和Faster RCNN网络结构。
在这里插入图片描述
相关代码

def main(argv):
    pycaffe_dir = os.path.dirname(__file__)

    parser = argparse.ArgumentParser()
    # Required arguments: input and output.
    parser.add_argument(
        "input_file",
        help="Input txt/csv filename. If .txt, must be list of filenames.\
        If .csv, must be comma-separated file with header\
        'filename, xmin, ymin, xmax, ymax'"
    )
    parser.add_argument(
        "output_file",
        help="Output h5/csv filename. Format depends on extension."
    )
    # Optional arguments.
    parser.add_argument(
        "--model_def",
        default=os.path.join(pycaffe_dir,
                "../models/bvlc_reference_caffenet/deploy.prototxt.prototxt"),
        help="Model definition file."
    )
    parser.add_argument(
        "--pretrained_model",
        default=os.path.join(pycaffe_dir,
                "../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel"),
        help="Trained model weights file."
    )
    parser.add_argument(
        "--crop_mode",
        default="selective_search",
        choices=CROP_MODES,
        help="How to generate windows for detection."
    )
    parser.add_argument(
        "--gpu",
        action='store_true',
        help="Switch for gpu computation."
    )
    parser.add_argument(
        "--mean_file",
        default=os.path.join(pycaffe_dir,
                             'caffe/imagenet/ilsvrc_2012_mean.npy'),
        help="Data set image mean of H x W x K dimensions (numpy array). " +
             "Set to '' for no mean subtraction."
    )
    parser.add_argument(
        "--input_scale",
        type=float,
        help="Multiply input features by this scale to finish preprocessing."
    )
    parser.add_argument(
        "--raw_scale",
        type=float,
        default=255.0,
        help="Multiply raw input by this scale before preprocessing."
    )
    parser.add_argument(
        "--channel_swap",
        default='2,1,0',
        help="Order to permute input channels. The default converts " +
             "RGB -> BGR since BGR is the Caffe default by way of OpenCV."

    )
    parser.add_argument(
        "--context_pad",
        type=int,
        default='16',
        help="Amount of surrounding context to collect in input window."
    )
    args = parser.parse_args()

    mean, channel_swap = None, None
    if args.mean_file:
        mean = np.load(args.mean_file)
        if mean.shape[1:] != (1, 1):
            mean = mean.mean(1).mean(1)
    if args.channel_swap:
        channel_swap = [int(s) for s in args.channel_swap.split(',')]

    if args.gpu:
        caffe.set_mode_gpu()
        print("GPU mode")
    else:
        caffe.set_mode_cpu()
        print("CPU mode")

    # Make detector.
    detector = caffe.Detector(args.model_def, args.pretrained_model, mean=mean,
            input_scale=args.input_scale, raw_scale=args.raw_scale,
            channel_swap=channel_swap,
            context_pad=args.context_pad)

    # Load input.
    t = time.time()
    print("Loading input...")
    if args.input_file.lower().endswith('txt'):
        with open(args.input_file) as f:
            inputs = [_.strip() for _ in f.readlines()]
    elif args.input_file.lower().endswith('csv'):
        inputs = pd.read_csv(args.input_file, sep=',', dtype={'filename': str})
        inputs.set_index('filename', inplace=True)
    else:
        raise Exception("Unknown input file type: not in txt or csv.")

    # Detect.
    if args.crop_mode == 'list':
        # Unpack sequence of (image filename, windows).
        images_windows = [
            (ix, inputs.iloc[np.where(inputs.index == ix)][COORD_COLS].values)
            for ix in inputs.index.unique()
        ]
        detections = detector.detect_windows(images_windows)
    else:
        detections = detector.detect_selective_search(inputs)
    print("Processed {} windows in {:.3f} s.".format(len(detections),
                                                     time.time() - t))

    # Collect into dataframe with labeled fields.
    df = pd.DataFrame(detections)
    df.set_index('filename', inplace=True)
    df[COORD_COLS] = pd.DataFrame(
        data=np.vstack(df['window']), index=df.index, columns=COORD_COLS)
    del(df['window'])

    # Save results.
    t = time.time()
    if args.output_file.lower().endswith('csv'):
        # csv
        # Enumerate the class probabilities.
        class_cols = ['class{}'.format(x) for x in range(NUM_OUTPUT)]
        df[class_cols] = pd.DataFrame(
            data=np.vstack(df['feat']), index=df.index, columns=class_cols)
        df.to_csv(args.output_file, cols=COORD_COLS + class_cols)
    else:
        # h5
        df.to_hdf(args.output_file, 'df', mode='w')
    print("Saved to {} in {:.3f} s.".format(args.output_file,
                                            time.time() - t))

CTPN网络结构
在这里插入图片描述

4 文本识别网络-CRNN

CRNN 介绍
CRNN 全称为 Convolutional Recurrent Neural Network,主要用于端到端地对不定长的文本序列进行识别,不用

图来自文章:一文读懂CRNN+CTC文字识别

整个CRNN网络结构包含三部分,从下到上依次为:

  1. CNN(卷积层),使用深度CNN,对输入图像提取特征,得到特征图;
  2. RNN(循环层),使用双向RNN(BLSTM)对特征序列进行预测,对序列中的每个特征向量进行学习,并输出预测标签(真实值)分布;
  3. CTC loss(转录层),使用 CTC 损失,把从循环层获取的一系列标签分布转换成最终的标签序列。

CNN
卷积层的结构图:
在这里插入图片描述

这里有一个很精彩的改动,一共有四个最大池化层,但是最后两个池化层的窗口尺寸由 2x2 改为 1x2,也就是图片的高度减半了四次(除以 2^4
),而宽度则只减半了两次(除以2^2),这是因为文本图像多数都是高较小而宽较长,所以其feature
map也是这种高小宽长的矩形形状,如果使用1×2的池化窗口可以尽量保证不丢失在宽度方向的信息,更适合英文字母识别(比如区分i和l)。

CRNN 还引入了BatchNormalization模块,加速模型收敛,缩短训练过程。

输入图像为灰度图像(单通道);高度为32,这是固定的,图片通过 CNN
后,高度就变为1,这点很重要;宽度为160,宽度也可以为其他的值,但需要统一,所以输入CNN的数据尺寸为 (channel, height,
width)=(1, 32, 160)。

CNN的输出尺寸为 (512, 1, 40)。即 CNN 最后得到512个特征图,每个特征图的高度为1,宽度为40。

Map-to-Sequence
我们是不能直接把 CNN 得到的特征图送入 RNN 进行训练的,需要进行一些调整,根据特征图提取 RNN 需要的特征向量序列。

在这里插入图片描述

现在需要从 CNN 模型产生的特征图中提取特征向量序列,每一个特征向量(如上图中的一个红色框)在特征图上按列从左到右生成,每一列包含512维特征,这意味着第
i 个特征向量是所有的特征图第 i 列像素的连接,这些特征向量就构成一个序列。

由于卷积层,最大池化层和激活函数在局部区域上执行,因此它们是平移不变的。因此,特征图的每列(即一个特征向量)对应于原始图像的一个矩形区域(称为感受野),并且这些矩形区域与特征图上从左到右的相应列具有相同的顺序。特征序列中的每个向量关联一个感受野。

如下图所示:
在这里插入图片描述

这些特征向量序列就作为循环层的输入,每个特征向量作为 RNN 在一个时间步(time step)的输入。

RNN
因为 RNN 有梯度消失的问题,不能获取更多上下文信息,所以 CRNN 中使用的是 LSTM,LSTM
的特殊设计允许它捕获长距离依赖,不了解的话可以看一下这篇文章 对RNN和LSTM的理解。

LSTM
是单向的,它只使用过去的信息。然而,在基于图像的序列中,两个方向的上下文是相互有用且互补的。将两个LSTM,一个向前和一个向后组合到一个双向LSTM中。此外,可以堆叠多层双向LSTM,深层结构允许比浅层抽象更高层次的抽象。

这里采用的是两层各256单元的双向 LSTM 网络:
在这里插入图片描述

通过上面一步,我们得到了40个特征向量,每个特征向量长度为512,在 LSTM 中一个时间步就传入一个特征向量进行分

我们知道一个特征向量就相当于原图中的一个小矩形区域,RNN
的目标就是预测这个矩形区域为哪个字符,即根据输入的特征向量,进行预测,得到所有字符的softmax概率分布,这是一个长度为字符类别数的向量,作为CTC层的输入。

因为每个时间步都会有一个输入特征向量 x^T ,输出一个所有字符的概率分布 y^T ,所以输出为 40 个长度为字符类别数的向量构成的后验概率矩阵。

如下图所示:
在这里插入图片描述

然后将这个后验概率矩阵传入转录层。
CTC loss
这算是 CRNN 最难的地方,这一层为转录层,转录是将 RNN
对每个特征向量所做的预测转换成标签序列的过程。数学上,转录是根据每帧预测找到具有最高概率组合的标签序列。

端到端OCR识别的难点在于怎么处理不定长序列对齐的问题!OCR可建模为时序依赖的文本图像问题,然后使用CTC(Connectionist Temporal
Classification, CTC)的损失函数来对 CNN 和 RNN 进行端到端的联合训练。

相关代码

    def inference(self, inputdata, name, reuse=False):
        """
        Main routine to construct the network
        :param inputdata:
        :param name:
        :param reuse:
        :return:
        """
        with tf.variable_scope(name_or_scope=name, reuse=reuse):
            # centerlized data
            inputdata = tf.divide(inputdata, 255.0)
            #1.特征提取阶段
            # first apply the cnn feature extraction stage
            cnn_out = self._feature_sequence_extraction(
                inputdata=inputdata, name='feature_extraction_module'
            )
            #2.第二步,  batch*1*25*512  变成 batch * 25 * 512
            # second apply the map to sequence stage
            sequence = self._map_to_sequence(
                inputdata=cnn_out, name='map_to_sequence_module'
            )
            #第三步,应用序列标签阶段
            # third apply the sequence label stage
            # net_out width, batch, n_classes
            # raw_pred   width, batch, 1
            net_out, raw_pred = self._sequence_label(
                inputdata=sequence, name='sequence_rnn_module'
            )

        return net_out

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

更多推荐

2023年8月京东美妆工具行业数据分析(京东数据运营)

近日,随着李佳琦为花西子品牌怒怼网友一事持续发酵,消费者的目光逐渐转移到这个国货美妆品牌昂贵的单克价格上。“一克眉笔价格高于一克黄金”,引发了不少消费者的讨论与吐槽。花西子眉笔事件尚未平息,在9月12日,一网友晒出之前自己买的花西子化妆刷,实付款919元。套刷是玉石化妆刷(5件套),人造纤维毛,目前官方旗舰店已没有售卖

设计模式之职责链模式

职责链模式:使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系。将这个对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它为止。这里发出这个请求的客户端并不知道这当中的哪一个对象最终处理这个请求,这些系统的更改可以在不影响客户端的情况下动态地重新组织和分配责任。ConcreteHandler

将自己的代码发布成可以pip安装的包

要将自己的Python代码打包并通过pip进行安装,可以按照以下步骤进行操作:创建一个新的文件夹,并将您的Python代码放入其中。确保您的代码结构是标准的Python包结构,即包含__init__.py文件和其他可能的模块文件。结构示例:your_package_name/__init__.pymodule1.pym

2023世界元宇宙大会进行时,智汇云舟携视频孪生技术与产品亮相

9月20日-22日,由中国仿真学会、中国指挥与控制学会和北京理工大学共同主办的“2023第二届世界元宇宙大会”在上海隆重举行。智汇云舟作为探索元宇宙前沿科技的优秀企业代表受邀参会,并携视频孪生技术与产品在特装展区惊艳亮相。图:大会现场智汇云舟展位本届大会以“虚实相生、产业赋能”为主题,邀请到110多位国内外专家、院士和

如何利用播放器节省20%点播成本

点播成本节省的点其实涉及诸多部分,例如:CDN、转码、存储等,而利用播放器降本却是很多客户比较陌生的部分。火山引擎基于内部支撑抖音集团相关业务的实践,播放器恰恰是成本优化中最重要和最为依赖的部分。火山引擎的视频团队做了份数据统计,在一个很经典的视频业务中,我们在2022年至2023年大约1年半的时间里,针对这个业务进行

el-calendar日历 简易排班

公司物流部要个简易的排班功能,由主管去设置线路,线路绑定上负责人。然后直接往日历里添加。1、隐藏了自带的切换月份,改用了日期选择器。2、禁用了非本月的点击事件,防止点击自动跳转到其他月份。3、添加了点击多选,批量处理,也有单日排班处理。4、拖拽删除排班,代码如下exportfunctiongetFirstDay(mon

一定要知道的 NOI 大纲(2023年修订版)变化

近日,中国计算机学会(CCF)正式发布了《NOI大纲(2023年修订版)》,明确地给出了竞赛的知识范围。CCF于2021年制定完成并首次发布了NOI大纲,大纲发布后,对竞赛组织、教师教学和选手学习发挥了很好的引导作用。根据NOI大纲制定之初的安排,大纲每两年修订一次。CCF最新发布的NOI大纲(2023年修订版),是N

信创办公–基于WPS的EXCEL最佳实践系列 (限制可录入内容)

信创办公–基于WPS的EXCEL最佳实践系列(限制可录入内容)目录应用背景操作过程1、数据有效性(支出证明单)2、如何完成数据有效性的使用(差旅报销申请表)3、清除数据验证4、利用圈释无效数据,验证已输入数据的有效性。5、灵活性调整数据有效性。应用背景本章内容主要讲解:如何在WPS上利用excel去获取数据,如何通过手

dockerfile用ENTRYPOINT好还是用CMD好

在Dockerfile中使用`ENTRYPOINT`和`CMD`都有其用途和优劣势,具体取决于你的应用和需求。这两个指令的主要区别在于如何处理容器启动时的命令参数。1.`CMD`指令:-`CMD`用于定义容器启动时的默认命令,但它可以在运行容器时被替代。如果在运行容器时提供了命令参数,那么这些参数会覆盖`CMD`中定义

说下 RESTful API 使用的几个方法

在最近的面试中,有问到说是说一下RESTfulAPI的几个方法。这次面试问的问题还是比较多的,但是很多问题都是开放性问题,说心里话很长时间没有遇到这样比较好的沟通式面试了。不少公司,以上来就做题目,这个让人很反感。不过现在做题目的过程中,很多公司也都强调,我们不需要有完整的方案,不能运行也没有关系,主要是看思路吧。小结

C++之mutex、operator()、lambda应用总结(二百三十一)

简介:CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长!优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀人生格言:人生从来没有捷径,只有行动才是治疗恐惧和懒惰的唯一良药.更多原创,欢迎关注:Android系统攻城狮1.前言本篇目的:理解C+

热文推荐