深度学习100例 | 第31天-卷积神经网络(DenseNet)识别生活物品

2023-07-28 09:51:28

🚀 我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
  • 显卡(GPU):NVIDIA GeForce RTX 3080
  • 数据:📌【传送门】

🚀 本文选自专栏:《深度学习100例》

🚀 深度学习新人必看:《小白入门深度学习》

  1. 小白入门深度学习 | 第一篇:配置深度学习环境
  2. 小白入门深度学习 | 第二篇:编译器的使用-Jupyter Notebook
  3. 小白入门深度学习 | 第三篇:深度学习初体验
  4. 小白入门深度学习 | 第四篇:配置PyTorch环境
  5. 小白入门深度学习 | 第五篇:数据不均衡的处理方法

🚀 往期精彩-卷积神经网络篇:

  1. 深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天
  2. 深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天
  3. 深度学习100例-卷积神经网络(CNN)服装图像分类 | 第3天
  4. 深度学习100例-卷积神经网络(CNN)花朵识别 | 第4天
  5. 深度学习100例-卷积神经网络(CNN)天气识别 | 第5天
  6. 深度学习100例-卷积神经网络(VGG-16)识别海贼王草帽一伙 | 第6天
  7. 深度学习100例-卷积神经网络(VGG-19)识别灵笼中的人物 | 第7天
  8. 深度学习100例-卷积神经网络(ResNet-50)鸟类识别 | 第8天
  9. 深度学习100例-卷积神经网络(AlexNet)手把手教学 | 第11天
  10. 深度学习100例-卷积神经网络(CNN)识别验证码 | 第12天
  11. 深度学习100例-卷积神经网络(Inception V3)识别手语 | 第13天
  12. 深度学习100例-卷积神经网络(Inception-ResNet-v2)识别交通标志 | 第14天
  13. 深度学习100例-卷积神经网络(CNN)实现车牌识别 | 第15天
  14. 深度学习100例-卷积神经网络(CNN)识别神奇宝贝小智一伙 | 第16天
  15. 深度学习100例-卷积神经网络(CNN)注意力检测 | 第17天
  16. 深度学习100例-卷积神经网络(LeNet-5)深度学习里的“Hello Word” | 第22天
  17. 深度学习100例-卷积神经网络(CNN)3D医疗影像识别 | 第23天
  18. 深度学习100例 | 第24天-卷积神经网络(Xception):动物识别
  19. 深度学习100例 | 第25天-卷积神经网络(CNN):中文手写数字识别
  20. 深度学习100例 | 第26天-卷积神经网络(CNN):乳腺癌识别
  21. 深度学习100例 | 第27天-卷积神经网络(CNN):艺术作品识别
  22. 深度学习100例 | 第28天:水果的识别与分类(准确率99.9%)
  23. 深度学习100例 | 第29天-ResNet50模型:船型识别
  24. 深度学习100例 | 第30天-MobileNetV2算法:动物识别(90类)
  25. 深度学习100例 | 第33天:迁移学习-实战案例教程(必须掌握的一个点)
  26. 深度学习100例 | 第34天:如何进行数据增强?
  27. 深度学习100例 | 第35天:脑肿瘤识别

🚀 往期精彩-循环神经网络篇:

  1. 深度学习100例-循环神经网络(RNN)实现股票预测 | 第9天
  2. 深度学习100例-循环神经网络(LSTM)实现股票预测 | 第10天
  3. 深度学习100例 | 第32天-GRU模型:算法生成小说

🚀 往期精彩-生成对抗网络篇:

  1. 深度学习100例-生成对抗网络(GAN)手写数字生成 | 第18天
  2. 深度学习100例-生成对抗网络(DCGAN)手写数字生成 | 第19天
  3. 深度学习100例-生成对抗网络(DCGAN)生成动漫小姐姐 | 第20天

我们的代码流程图如下所示:

一、设置GPU

import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")
    
import matplotlib.pyplot as plt
import os,PIL,pathlib
import numpy as np
import pandas as pd
import warnings
from tensorflow import keras

warnings.filterwarnings("ignore")#忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

二、导入数据

1. 查看数据情况

import pathlib

data_dir = "./31-data/"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)
图片总数为: 30608
# 统计每一个类别的数目
class_name = []
class_sum  = []

for i in data_dir.glob('*'):

    one_dir = ".\\" + str(i)
    one_dir = pathlib.Path(one_dir)
    
    class_name.append(str(i).split(".")[1])
    class_sum.append(len(list(one_dir.glob('*'))))

class_dict = {'class_name':class_name,'class_sum':class_sum}
class_df   = pd.DataFrame(class_dict,columns=['class_name', 'class_sum'])
# 按照图片数量进行降序排序
class_df = class_df.sort_values(by="class_sum" , ascending=False)
class_df.head()
class_nameclass_sum
256clutter827
250airplanes-101800
144motorbikes-101798
252faces-easy-101435
231t-shirt358
def draw_bar(X,Y):
    
    plt.figure(figsize=(6, 4))

    plt.barh(X, Y, align='center',color=['r','g','b','c','y','m'],alpha=0.7)
    plt.xticks(fontsize=12)    # 设置刻度字体大小
    plt.yticks(fontsize=12)   
    plt.xlabel('图片数量',size=12)  #设置x轴标签
#     plt.ylabel('y轴',size=12)  #设置y轴标签
    plt.title('数据集数量top-5与bottom-5对比分析',size=14)
    
    plt.show()

top_5_X    = list(class_df["class_name"][  :5])
top_5_Y    = list(class_df["class_sum"][  :5])

bottom_5_X = list(class_df["class_name"][-5: ])
bottom_5_Y = list(class_df["class_sum"][-5: ])

X= top_5_X+bottom_5_X
Y =top_5_Y+bottom_5_Y

draw_bar(X,Y)

在实验开始时查看数据集分布情况,部分类别图片数量过少时,需要及时补充数据。

2. 加载数据

batch_size = 16
img_height = 224
img_width  = 224
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789

通过该方法导入数据时,会同时打乱数据
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 30607 files belonging to 257 classes.
Using 24486 files for training.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789

通过该方法导入数据时,会同时打乱数据
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 30607 files belonging to 257 classes.
Using 6121 files for validation.
class_names = list(class_df["class_name"])
# print("数据类别有:",class_names)
print("需要识别的物体一共有%d类"%len(class_names))
需要识别的物体一共有257类
for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(16, 224, 224, 3)
(16,)

3. 配置数据集

  • shuffle() : 打乱数据。
  • prefetch() : 预取数据,加速运行,其详细介绍可以参考我前两篇文章,里面都有讲解。
  • cache() : 将数据集缓存到内存当中,加速运行
AUTOTUNE = tf.data.AUTOTUNE

def train_preprocessing(image,label):
    return (image/255.0,label)

train_ds = (
    train_ds#.cache()              # 如果数据量过大,尽量不要缓存,不然电脑会卡死
    .map(train_preprocessing)      # 这里可以设置预处理函数
    .prefetch(buffer_size=AUTOTUNE)
)

val_ds = (
    val_ds#.cache()                # 如果数据量过大,尽量不要缓存,不然电脑会卡死
    .map(train_preprocessing)      # 这里可以设置预处理函数
    .prefetch(buffer_size=AUTOTUNE)
)

4. 数据可视化

plt.figure(figsize=(10, 8))  # 图形的宽为10高为5
plt.suptitle("数据展示")

for images, labels in train_ds.take(1):
    for i in range(15):
        plt.subplot(4, 5, i + 1)
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)

        # 显示图片
        plt.imshow(images[i])
        # 显示标签
        # plt.xlabel(class_names[labels[i]-1])

plt.show()

三、构建DenseNet模型

from tensorflow.keras.models import Model
from tensorflow.keras import layers
from tensorflow.keras import backend 

def dense_block(x, blocks, name):
    for i in range(blocks):
        x = conv_block(x, 32, name=name + '_block' + str(i + 1))
    return x

def conv_block(x, growth_rate, name):
    bn_axis = 3 
    x1 = layers.BatchNormalization(axis=bn_axis,
                                   epsilon=1.001e-5,
                                   name=name + '_0_bn')(x)
    x1 = layers.Activation('relu', name=name + '_0_relu')(x1)
    x1 = layers.Conv2D(4 * growth_rate, 1,
                       use_bias=False,
                       name=name + '_1_conv')(x1)
    x1 = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
                                   name=name + '_1_bn')(x1)
    x1 = layers.Activation('relu', name=name + '_1_relu')(x1)
    x1 = layers.Conv2D(growth_rate, 3,
                       padding='same',
                       use_bias=False,
                       name=name + '_2_conv')(x1)
    x = layers.Concatenate(axis=bn_axis, name=name + '_concat')([x, x1])
    return x

def transition_block(x, reduction, name):
    bn_axis = 3
    x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
                                  name=name + '_bn')(x)
    x = layers.Activation('relu', name=name + '_relu')(x)
    x = layers.Conv2D(int(backend.int_shape(x)[bn_axis] * reduction), 1,
                      use_bias=False,
                      name=name + '_conv')(x)
    x = layers.AveragePooling2D(2, strides=2, name=name + '_pool')(x)
    return x

def DenseNet(blocks, input_shape=None, classes=1000, **kwargs):

    img_input = layers.Input(shape=input_shape)

    bn_axis = 3

    # 224,224,3 -> 112,112,64
    x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input)
    x = layers.Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x)
    x = layers.BatchNormalization(
        axis=bn_axis, epsilon=1.001e-5, name='conv1/bn')(x)
    x = layers.Activation('relu', name='conv1/relu')(x)
    
    # 112,112,64 -> 56,56,64
    x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)))(x)
    x = layers.MaxPooling2D(3, strides=2, name='pool1')(x)

    # 56,56,64 -> 56,56,64+32*block[0]
    # Densenet121 56,56,64 -> 56,56,64+32*6 == 56,56,256
    x = dense_block(x, blocks[0], name='conv2')

    # 56,56,64+32*block[0] -> 28,28,32+16*block[0]
    # Densenet121 56,56,256 -> 28,28,32+16*6 == 28,28,128
    x = transition_block(x, 0.5, name='pool2')

    # 28,28,32+16*block[0] -> 28,28,32+16*block[0]+32*block[1]
    # Densenet121 28,28,128 -> 28,28,128+32*12 == 28,28,512
    x = dense_block(x, blocks[1], name='conv3')
    
    # Densenet121 28,28,512 -> 14,14,256
    x = transition_block(x, 0.5, name='pool3')

    # Densenet121 14,14,256 -> 14,14,256+32*block[2] == 14,14,1024
    x = dense_block(x, blocks[2], name='conv4')

    # Densenet121 14,14,1024 -> 7,7,512
    x = transition_block(x, 0.5, name='pool4')

    # Densenet121 7,7,512 -> 7,7,256+32*block[3] == 7,7,1024
    x = dense_block(x, blocks[3], name='conv5')
    
    x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='bn')(x)
    x = layers.Activation('relu', name='relu')(x)

    x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
    x = layers.Dense(classes, activation='softmax', name='fc1000')(x)

    inputs = img_input

    if blocks == [6, 12, 24, 16]:
        model = Model(inputs, x, name='densenet121')
    elif blocks == [6, 12, 32, 32]:
        model = Model(inputs, x, name='densenet169')
    elif blocks == [6, 12, 48, 32]:
        model = Model(inputs, x, name='densenet201')
    else:
        model = Model(inputs, x, name='densenet')
    return model

def DenseNet121(input_shape=[224,224,3], classes=len(class_names), **kwargs):
    return DenseNet([6, 12, 24, 16], input_shape, classes, **kwargs)

def DenseNet169(input_shape=[224,224,3], classes=len(class_names), **kwargs):
    return DenseNet([6, 12, 32, 32], input_shape, classes, **kwargs)

def DenseNet201(input_shape=[224,224,3], classes=len(class_names), **kwargs):
    return DenseNet([6, 12, 48, 32], input_shape, classes, **kwargs)

四、编译

model = DenseNet121()

optimizer = tf.keras.optimizers.Adam(lr=1e-3)

model.compile(optimizer=optimizer,
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

五、训练模型

from tensorflow.keras.callbacks import ModelCheckpoint, Callback, EarlyStopping, ReduceLROnPlateau, LearningRateScheduler

NO_EPOCHS = 40
PATIENCE  = 5
VERBOSE   = 1

# 设置动态学习率
# annealer = LearningRateScheduler(lambda x: 1e-4 * 0.98 ** x)

# 设置早停
# earlystopper = EarlyStopping(monitor='loss', patience=PATIENCE, verbose=VERBOSE)

# 设置回调函数
checkpointer = ModelCheckpoint('best_model.h5',
                                monitor='val_accuracy',
                                verbose=VERBOSE,
                                save_best_only=True,
                                save_weights_only=True)
train_model  = model.fit(train_ds,
                  epochs=NO_EPOCHS,
                  verbose=1,
                  validation_data=val_ds,
                  callbacks=[checkpointer])
Epoch 1/40
1531/1531 [==============================] - 155s 94ms/step - loss: 5.1739 - accuracy: 0.0677 - val_loss: 19.6963 - val_accuracy: 0.0601

Epoch 00001: val_accuracy improved from -inf to 0.06012, saving model to best_model.h5
Epoch 2/40
1531/1531 [==============================] - 140s 92ms/step - loss: 4.7255 - accuracy: 0.1058 - val_loss: 4.7597 - val_accuracy: 0.1132

Epoch 00002: val_accuracy improved from 0.06012 to 0.11322, saving model to best_model.h5
Epoch 3/40
1531/1531 [==============================] - 139s 91ms/step - loss: 4.3067 - accuracy: 0.1527 - val_loss: 4.2869 - val_accuracy: 0.1626

 ......

Epoch 00036: val_accuracy did not improve from 0.44257
Epoch 37/40
1531/1531 [==============================] - 140s 91ms/step - loss: 0.1387 - accuracy: 0.9556 - val_loss: 4.4015 - val_accuracy: 0.4468

Epoch 00037: val_accuracy improved from 0.44257 to 0.44682, saving model to best_model.h5
Epoch 38/40
1531/1531 [==============================] - 140s 91ms/step - loss: 0.1244 - accuracy: 0.9622 - val_loss: 4.2792 - val_accuracy: 0.4485

Epoch 00038: val_accuracy improved from 0.44682 to 0.44846, saving model to best_model.h5
Epoch 39/40
1531/1531 [==============================] - 136s 89ms/step - loss: 0.1210 - accuracy: 0.9627 - val_loss: 4.3829 - val_accuracy: 0.4511

Epoch 00039: val_accuracy improved from 0.44846 to 0.45107, saving model to best_model.h5
Epoch 40/40
1531/1531 [==============================] - 138s 90ms/step - loss: 0.1113 - accuracy: 0.9668 - val_loss: 4.4362 - val_accuracy: 0.4527

Epoch 00040: val_accuracy improved from 0.45107 to 0.45270, saving model to best_model.h5

六、评估模型

1. Accuracy与Loss图

acc = train_model.history['accuracy']
val_acc = train_model.history['val_accuracy']

loss = train_model.history['loss']
val_loss = train_model.history['val_loss']

epochs_range = range(len(acc))

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

加入Dropout层后过拟合现象得到了缓解,没有那么明显了。

2. 各项指标评估

from sklearn import metrics

def test_accuracy_report(model):
#     print(metrics.classification_report(val_label, val_pre, target_names=class_names)) 
    score = model.evaluate(val_ds, verbose=0)
    print('Loss : %s, accuracy:' % score[0], score[1])
    
test_accuracy_report(model)
Loss : 4.436242580413818, accuracy: 0.4527038037776947



更多推荐

vue的组件化编程的详细讲解加代码演示

😀前言本片文章是vue系列第5篇整理了vue的组件化编程的详细讲解加代码演示🏠个人主页:尘觉主页🧑个人简介:大家好,我是尘觉,希望我的文章可以帮助到大家,您的满意是我的动力😉😉在csdn获奖荣誉:🏆csdn城市之星2名⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣⁣💓Java全栈群星计划t

Mysql002:(库和表)操作SQL语句

目录:》SQL通用规则说明SQL分类:》DDL(数据定义:用于操作数据库、表、字段)》DML(数据编辑:用于对表中的数据进行增删改)》DQL(数据查询:用于对表中的数据进行查询)》DCL(用户权限:用于创建用户、修改数据库访问权限等)SQL通用规则说明:1.SQL语句可以单行编写,也可以多行编写,以英文分号结束2.SQ

基于Java+vue前后端分离高校社团管理系统设计实现(源码+lw+部署文档+讲解等)

博主介绍:✌全网粉丝30W+,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌🍅文末获取源码联系🍅👇🏻精彩专栏推荐订阅👇🏻不然下次找不到哟2022-2024年最全的计算机软件毕业设计选题

如何实现微服务

一、问题拆解1.1、客户端如何访问这些服务原来的Monolithic方式开发,所有的服务都是本地的,UI可以直接调用;现在按功能拆分成独立的服务,跑在独立的虚拟机上的Java进程了。客户端UI如何访问他的?后台有N个服务,前台就需要记住管理N个服务,一个服务下线/更新/升级,前台就要重新部署,这明显不符合我们拆分的理念

【LeetCode题目详解】第十章 单调栈part02 ● 503.下一个更大元素II ● 42. 接雨水 (day59补)

本文章代码以c++为例!一、力扣第503题:下一个更大元素II题目:给定一个循环数组nums(nums[nums.length-1]的下一个元素是nums[0]),返回nums中每个元素的下一个更大元素。数字x的下一个更大的元素是按数组遍历顺序,这个数字之后的第一个比它更大的数,这意味着你应该循环地搜索它的下一个更大的

vvic API接口接入说明:解锁新一代数据可视化的无限可能

随着大数据时代的来临,数据可视化已成为我们理解、分析和呈现复杂数据的重要手段。在这个领域中,vvic以其独特的优势,引领着数据可视化的发展潮流。其强大的API接口,更是为开发者提供了无限可能,让数据可视化变得更为简单、直观和生动。vvicAPI接口是一个高度灵活、易于使用的工具,旨在帮助开发者快速创建出美观、功能丰富的

web应用及微信小程序版本更新检测方案实践

背景:随着项目体量越来越大,用户群体越来越多,用户的声音也越来越明显;关于应用发版之后用户无感知,导致用户用的是仍然还是老版本功能,除非用户手动刷新,否则体验不到最新的功能;这样的体验非常不好,于是我们团队针对该问题给出了相应的解决方案来处理;技术栈:vue3+ts+vite+ant-design-vue1.web应用

视屏点播项目

项目背景大家应该在电脑上刷过视频吧,这个项目就是模拟一下我们刷视频的整个流程,我们要做的是一个类似B站的网页,这里面包含视频的上传修改和观看以及删除,注意我这个是一个简易版本的,在后面我会做一个升级,增加其他的功能.基本原理下面我们说一下我们项目的基本原理.我们这里做的是服务器客户端类型的项目.当客户端发起请求之后,我

PyTorch中的pyi檔案生成機制

PyTorch中的pyi檔案生成機制前言pyi檔由py生成pyi.in由pyi.in生成pyitorch/CMakeLists.txttools/pyi/gen_pyi.pygen_pyinative_functionsrand.names&rand.names_outrand.generator_with_names

Linux文件编程(lseek函数和stat函数)

文章目录前言一、lseek函数二、stat函数总结前言本篇文章来讲解lseek函数和stat函数,lseek函数主要用来设置文件偏移量,stat函数主要用来获取文件属性。一、lseek函数lseek函数用于在打开的文件中移动文件指针的位置。它可以用于设置文件的读写位置或查找特定位置的数据。函数原型如下:#include

Linux 系统下 CMake 示 例

CMake是一个开源的跨平台工具,可以构建、测试和打包软件。它具有如下特性:自动搜索可能需要的程序、库和头文件的能力;独立的构建目录(如build),可以安全清理;支持复杂的自定义命令(下载、生成各种文件);自定义配置可选组件;从简单的文本文件(CMakeLists.txt)自动生成工作区和项目的能力;在主流平台上自动

热文推荐