数据结构--二叉树-堆(1)

2023-09-11 22:23:10

概念

树是一种常见的非线性数据结构,,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
在这里插入图片描述
在这里插入图片描述

相关的基本概念

在这里插入图片描述

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点

非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G…等节点为分支节点

双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点

孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点

兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点

树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

树的高度或深度:树中节点的最大层次; 如上图:树的高度为4

堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点

节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙

森林:由m(m>0)棵互不相交的树的集合称为森林;

一些概念类似于祖辈关系;
起始结点称为根节点,也就是图中的A;
树可以分为很多种子树,子树部分可以也有自己的根节点;
在这里插入图片描述
树是递归定义的

树的表示

对于树来说,结构比较复杂,存储起来比较困难;既要保存数据,又要保证节点与节点之间的联系;在实际中,有这几种表示方法:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。

这里介绍其中的一种:孩子兄弟表示法:

typedef int DataType;
struct Node
{
 struct Node* _firstChild1; // 第一个孩子结点
 struct Node* _pNextBrother; // 指向其下一个兄弟结点
 DataType _data; // 结点中的数据域
};

在这里插入图片描述

二叉树

概念

二叉树是一种特殊的树结构,每个节点最多可以有两个子节点。且这两个节点分别称之为左子树和右子树(左孩子和右孩子);节点也可以没有子节点和只有一个子节点;
在这里插入图片描述
二叉树是有左右之分的,是一种有序树;

特殊情况:
在这里插入图片描述

特殊二叉树

满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
. 在这里插入图片描述

性质

1.若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1) 个结点.
2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h-1.
3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n2 ,则有 n2= n0+1.

看下面一道例题:
在这里插入图片描述
在这里插入图片描述

二叉树的顺序结构

一般的二叉树,是不适合用数组的存储结构来表示的,只有完全二叉树这种连续性的树结构才适合,在现实中,堆就是用这种结构来存储的。
注意:这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
在这里插入图片描述

堆的概念

堆其实就是一颗完全二叉树,除最后一层的叶节点,其他层的节点全是满的堆又分为大堆和小堆。在小堆中,对于任意节点i,父节点的值小于等于子节点的值;在大堆中,对于任意节点i,父节点的值大于等于子节点的值。实际中,堆还是数组,只是存储的逻辑顺序是完全二叉树的从上到下的顺序。

在这里插入图片描述

堆的实现

这是堆结构

typedef int HPDataType;
typedef struct Heap
{
	HPDataType* a; //存储的数组
	int size; //存储的大小
	int capacity; //数组的大小
}HP;

初始化

void HeapInit(HP* php)
{
	assert(php);
	php->a = NULL;
	php->capacity = php->size = 0;
}

将数组初始化为空,存储量和容量都设为0即可;

数组初始化为堆

有时我们会将一个数组变成堆的存储结构;

void HeapInitArray(HP* php, int* a, int n)
{
	assert(php);
	assert(a);
	//先将堆的数组创建空间
	php->a = (HPDataType*)malloc(sizeof(HPDataType)*n);
	if (php->a == NULL)
	{
		perror("HeapInit Fail");
		exit(-1);
	}
	php->capacity = php->size = n;

	//复制过去
	memcpy(php->a, a,sizeof(HPDataType)* n);
	//建堆
	for (int i = 1; i < n; i++)
	{
		AdjustUp(php->a, i);//向上调整
	}
}


向上调整是孩子可能会变化为父亲,所以从第1个下标开始,而不是第0个;

向上调整

这里先说一下父亲与孩子下标的关系:
在这里插入图片描述

由于堆的概念,当我们插入一个数据进去或者想将数组变化为数组时,需要对这个存储的数据进行调整;而我们调整的逻辑,就是根据堆的结构去调整的。
在这里插入图片描述

void Swap(HPDataType* p1, HPDataType* p2)
{
	HPDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
void AdjustUp(HPDataType* a, int child)
{
	assert(a);
	//父亲节点
	HPDataType parent = (child - 1) / 2;

	while (child > 0)
	{
	//孩子节点的值比父亲节点的值小就交换
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (parent - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

利用循环来进行调整,这种调整,前提是前面的结构是堆,时间复杂度为O(logN);

向下调整

有向上调整,自然有向下调整,对于堆顶的值的插入,就需要进行向下调整。

void AdjustDown(HPDataType* a, int n, int parent)
{
	assert(a);
	HPDataType child = parent * 2 + 1;

	while (child < n)
	{
		//判断左右孩子大小
		if (child + 1 < n && a[child + 1] < a[child])
		{
			child++;
		}
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = child * 2 + 1;
		}
		else
		{
			break;
		}
	}

}

这里以左孩子为主,当右孩子比左孩子大时,就将右孩子与父亲节点进行比较;

插入

我们会在数组的size的后面进行插入,也就是堆底;

void HeapPush(HP* php, HPDataType x)
{
	assert(php);
	//满扩容
	if (php->capacity == php->size)
	{
		int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newcapacity);
		if (tmp == NULL)
		{
			perror("Realloc fail");
			exit(-1);
		}
		php->a = tmp;
		php->capacity = newcapacity;
	}
	//插入
	php->a[php->size] = x;
	php->size++;
	//向上调整
	AdjustUp(php->a, php->size - 1);
}

删除

我们删除的是堆顶的数据,如果按常规想法,删除堆顶数据,然后进行移动,可不可行呢?
在这里插入图片描述
显然是不行的,解决方法是先将最后一个数据与堆顶数据交换,然后对交换后的堆顶值进行向下调整。因为调换删除后,除了堆顶,下面的数据都满足堆的条件。
在这里插入图片描述

void HeapPop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(php));
	//堆顶与删除数据交换
	Swap(&php->a[0], &php->a[php->size - 1]);
	
	//删除
	php->size--;
	//向下调整
	AdjustDown(php->a, php->size, 0);
	
}

打印、摧毁、判空、获取堆顶数据

//打印
void HeapPrint(HP* php)
{
	assert(php);

	for (int i = 0; i < php->size; i++)
	{
		printf("%d ", php->a[i]);
	}
	printf("\n");
}
//摧毁
void HeapDestory(HP* php)
{
	assert(php);
	free(php->a);
	php->a = NULL;

	php->capacity = php->size = 0;
}
HPDataType HeapTop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(php));
	return php->a[0];
}
bool HeapEmpty(HP* php)
{
	assert(php);

	return php->size == 0;
}

验证

接下来就来进行验证
先验证数组初始化为堆:

int main()
{
	int a[] = { 65,100,70,32,50,60 };
	HP heap;

	HeapInitArray(&heap, a, 6);
	HeapPrint(&heap);
	return 0
}

在这里插入图片描述
接着依次验证插入删除和获取堆顶数据:

int main()
{
	HeapInit(&heap);
	for (int i = 0; i < 6; i++)
	{
		HeapPush(&heap, a[i]);
	}
	HeapPrint(&heap);
	HeapPop(&heap);
	HeapPrint(&heap);
	printf("%d", HeapTop(&heap));

	HeapDestory(&heap);

	return 0;
}

在这里插入图片描述

堆的应用

接着说堆比较常用的两个应用,堆排序和TopK问题。

堆排序

第一种方法,我们的思路是,先建立一个堆结构,然后利用堆的删除思想进行排序。

//小堆
void HeapSort(int* a, int n)
{
	//建堆
	HP hp;
	HeapInit(&hp);
	for (int i = 0; i < n; i++)
	{
		HeapPush(&hp, a[i]);
	}

	//利用堆删除原理来进行排序
	int i = 0;
	while (!HeapEmpty(&hp))
	{
		a[i++] = HeapTop(&hp);
		HeapPop(&hp);
	}
	
	HeapDestory(&hp);
}
int main()
{

	int a[] = { 2,3,5,7,4,6,8 };
	HeapSort(a, sizeof(a) / sizeof(a[0]));

	return 0;
}

在这里插入图片描述

这种方法,小堆对应的是升序;利用堆顶是最小的,然后对它取值后删除的原理进行排序,时间复杂度为O(N* logN * N);

还有一种方法,先对数组进行建堆,将堆顶与最后一个数据进行替换,以升序建大堆为例,最大的值与堆底替换后,那么最大的值就放在了最后的空间里了,再对数组长度做限制,那就可以完成排序了;

//小堆
void HeapSort(int* a, int n)
{
	//升序:大堆    降序:小堆
	for (int i = 1; i < n; i++)
	{
		AdjustUp(a, i);
	}

	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}

int main()
{

	int a[] = { 2,3,5,7,4,6,8 };
	HeapSort(a, sizeof(a) / sizeof(a[0]));

	return 0;
}

在这里插入图片描述
时间复杂度O(N)=N*logN
显然下面方法排序的更快。

TopK问题

即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

  1. 用数据集合中前K个元素来建堆
    前k个最大的元素,则建小堆
    前k个最小的元素,则建大堆
  2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

void PrintTopk(const char* filename, int k)
{
	//建堆
	FILE* fout = fopen(filename, "r");
	if (fout == NULL)
	{
		perror("fout fail");
		exit(-1);
	}

	int* minheap = (int*)malloc(sizeof(int) * k);
	if (minheap == NULL)
	{
		perror("minheap fail");
		exit(-1);
	}
	//数据输入
	for (int i = 0; i < k; i++)
	{
		fscanf(fout, "%d", &minheap[i]);
	}
	//建堆
	/*for (int i = 1; i < k; i++)
	{
		AdjustUp(minheap, i);
	}*/
	for (int i = (k - 1-1) / 2; i >= 0; i--)
	{
		AdjustDown(minheap, k, i);
	}

	//交换
	int x = 0;
	while (fscanf(fout, "%d", &x) != EOF)
	{
		if (x > minheap[0])
		{
			minheap[0] = x;
			AdjustDown(minheap, k, 0);
		}
	}

	for (int i = 0; i < k; i++)
	{
		printf("%d\n", minheap[i]);
	}
	fclose(fout);
}

//数据创建
void CreateNDate()
{
	int n = 1000000;
	srand(time(NULL));
	const char* file = "data.txt";
	FILE* bin = fopen(file, "w");
	if (bin == NULL)
	{
		perror("FILE Fail");
		exit(-1);
	}

	for (int i = 0; i < n; i++)
	{
		int x = (rand() + i) % 1000000;
		fprintf(bin, "%d\n", x);
	}

	fclose(bin);

}

int main()
{
	//CreateNDate();

	PrintTopk("data.txt", 5);

	return 0;
}

在这里插入图片描述

先利用随机数创建一个数据文件,然后先将k个数据存储进数组中,接着建堆,最后将n-k个数据与堆顶进行比较,大于堆顶就进堆;

这里有两种建堆方法,一种是向上调整的建堆,另一种是向下调整的建堆;

向上调整的建堆:
在这里插入图片描述
在这里插入图片描述

向下调整的建堆:
在这里插入图片描述
在这里插入图片描述
时间复杂度T(N)=N;

从简单的角度来看,向上调整时,堆底的最底层数据几乎是堆的一半,都需要向上调整;而向下调整,堆顶只有一个,相比之下,向下调整肯定所用时间比较少。

更多推荐

Spring 篇

1、什么是Spring?Spring是一个轻量级的IOC和AOP容器框架。是为Java应用程序提供基础性服务的一套框架,目的是用于简化企业应用程序的开发,它使得开发者只需要关心业务需求。常见的配置方式有三种:基于XML的配置、基于注解的配置、基于Java的配置。主要由以下几个模块组成:SpringCore:核心类库,提

RFID技术在工业智能制造生产线中的应用

随着自动化和信息化的快速发展,工业智能制造成为制造业的重要趋势,在制造商的生产线上,准确获取和管理工艺流程等各个环节的信息至关重要,作为物联网感知层的核心组成部分,RFID技术以其非接触式、无感知的特点,实现了智能化的识别和数据采集,通过RFID电子标签实现了设备的互联,在复杂的工业制造环境中,结合RFID电子标签、R

xterm使用

xterm使用前言1.xterm介绍2.xterm使用2.1xterm简单示例2.2xterm监听输入并在终端中实时显示方式1:onKey监听方式2:onData监听onData和onKey什么区别2.3xterm与vue整合2.3xterm+vue+websocket附录配置说明前言vue与xterm整合记录1.xt

让开源数据开发平台助力提质增效!

用低代码技术平台,可以提高办公协作效率,可以让数据资源变得更有意义和价值,也可以为企业做出更理想的发展决策。作为开源数据开发平台服务商,流辰信息谨守研发初心,一直在低代码技术平台领域努力耕耘,为行业的进步和数字化发展贡献力量。由于社会的发展和进步,传统的表单制作工具已经无法为企业创造高效益,如果想要获得发展和壮大,需要

初探微前端

微前端一、微前端的背景和概述1.1概念1.2特点1.3背景二、微前端的实现方式2.1服务端集成2.2运行时集成三、现有的解决方案3.1single-spa3.2qiankun3.3micro-app四、总结🚀🚀🚀随着互联网技术的不断发展,前端应用规模和复杂性也在不断增加。传统的单体前端应用面临着很多挑战,比如应用

webpack:系统的了解webpack一些核心概念

文章目录webpack如何处理应用程序?何为webpack模块chunk?入口(entry)输出(output)loader开发loader插件(plugin)简介流程插件开发:Tapable类监听(watching)compiler钩子compilation钩子compiler和compilation创建自定义插件l

有关在 Windows 上使用 Python 的常见问题解答

🎬岸边的风:个人主页🔥个人专栏:《VUE》《javaScript》⛺️生活的理想,就是为了理想的生活!目录使用pipinstall解决包安装问题使用WSL解决pip安装问题什么是py.exe?为什么运行python.exe会打开MicrosoftStore?当我复制粘贴文件路径时,为什么在Python中不起作用?什

前端js面试题 (一)

文章目录1、请你阐述一下原型与原型链。2、开发中的闭包问题。3、call、apply、bind的用途与区别4、手写一个promise5、箭头函数与普通函数6、递归与尾递归。7、await返回值是什么。8、promise.then,setInterval,Promise.resolve,执行顺序9、letconstvar

Python打包教程 PyInstaller和cx_Freeze

当我们开发Python应用程序时,通常会将代码保存在.py文件中,然后通过Python解释器运行它。这对于开发和测试是非常方便的,但在将应用程序分享给其他人或在不同环境中部署时,可能会带来一些问题。为了解决这些问题,我们可以使用打包工具将Python应用程序转换为可执行文件,这样它就可以在不需要安装Python解释器的

​​​​MyBatis友人帐之基础入门

一、简介1.1什么是MyBatisMyBatis是一个开源的、轻量级的数据持久层框架,它可以简化JDBC的操作,让开发者只需要关注SQL语句本身,而不用处理加载驱动、创建连接、创建语句等繁琐的过程。MyBatis支持自定义SQL、存储过程和高级映射,可以通过XML或注解来配置和映射原始类型、接口和JavaPOJO(普通

Android 虚拟机

文章目录Android虚拟机Java虚拟机基于栈的虚拟机栈的执行流程Dalvik虚拟机基于寄存器的虚拟机寄存器的执行流程Java虚拟机与Dalvik虚拟机区别ART虚拟机Android7.0的运行方式Android虚拟机Java虚拟机基于栈的虚拟机每一个运行时的线程,都有一个独立的栈。栈中记录了方法调用的历史,每一次方

热文推荐