论文阅读_大语言模型_Llama2

2023-09-20 21:23:20

英文名称: Llama 2: Open Foundation and Fine-Tuned Chat Models
中文名称: Llama 2:开源的基础模型和微调的聊天模型
文章: http://arxiv.org/abs/2307.09288
代码: https://github.com/facebookresearch/llama
作者: Hugo Touvron
日期: 2023-07-19
引用次数: 110

1 读后感

这是一篇77页的论文,正文也有36页,让人望而却步。整体分成:Introduction,Pretraining,Fine-tune,Safety,Discussion,RelateWork, Conclusion几部分,如果没有时间,看看前三个部分,大概20页左右也就差不多了。

产出的模型从7B到70B参数,其成果除了基本的 LLAMA-2 模型,还有精调的 LLAMA 2-CHAT 模型,其精调模型与 ChatGPT (3.5) 性能相当,可作为闭源模型的替代品,且 70B 的体量也是可接受的。

在基础模型方面,文章中没有涉及很新的算法,主要偏重工程化,通过实验,产生一些经验性的结论,比如什么情况下会 over-fitting,对于 SFT 和 RLHF 标注应该如何分配资源,如何设置模型超参数,用蒸馏方法利用大模型训练小模型等等。

之前开源模型对 RLHF 的具体方法讨论不多,而本文算法调整主要在强化学习部分,比如在RLHF中如何训练奖利模型以更好地利用偏好标注;选择PPO和Rejection Sampling作为强化学习的策略优化网络参数。如果你对 RLHF 具体实现感兴趣,比较推荐看看这篇文章。

2 介绍

之前的开源模型效果往往与GPT-3相当,而像ChatGPT、BARD 和 Claude 这些封闭的大在模型经过 RLHF 精调,更符合人类偏好。精调往往需要巨大的算力和人工标注成本,且常是不透明且不易复制的,这限制了社区推进人工智能对齐的进展,文章致力于改进此问题。

文章产出包括:

  • Llama 2 :Llama 1 的更新版本,使用新的公开数据组合进行训练。还将预训练语料库的大小增加了 40%,将模型的上下文长度加倍,并采用分组查询注意力机制。最终发布具有 7B、13B 和 70B 参数的 Llama 2 基础模型。
  • Llama 2-Chat:Llama 2 的微调版本,针对对话用例进行了优化。也发布了具有 7B、13B 和 70B 参数的模型。

3 预训练

预测训练使用了 从 Touvron(2023 原 Llama论文)中描述的预训练方法。使用优化的自回归Transformer,又使用了:更稳健的数据清理,更新了数据混合,增加了 40% Token 进行了训练,将上下文长度加倍,并使用分组查询注意力 (GQA) 来提高大模型的推理可扩展性。表-1 比较了新 Llama 2 与 Llama 1。
[图片上传失败...(image-8c1ec7-1695215062279)]

从图-2中可以看到,纵轴是 Loss,当训练数据增加到2T时,模型仍在优化:

在这里插入图片描述
模型使用 A-100 80G 集群训练,表-2展示了模型使用的算力和碳排:

在这里插入图片描述
由于模型最终被发布,后续模型可以基于该模型调优,从这个角度看,开放的模型也可以算是减少了大模型的全球碳排。

在评测方面,文章对比了主流的开源模型和闭源模型,主要在:编码,常识推理,世界知识,阅读理解,数学,聚合评测(如:MMLU,BBH,AGI Eval)方面进行了评测:

在这里插入图片描述
在这里插入图片描述

可以看到,Llama-2 各项结果明显优于当前的开源模型,和闭源模型相比有差异。请注意:这是预训练的版本,后面还会继续比较 fine-tune 之后的结果。

4 精调

Llama 2-Chat 主要使用了对齐技术(包括 SFT 和 RLHF)需要大量的计算和标注资源。另外,还使用了 Ghost Attention (GAtt) 注意力机制来优化多轮对话。

4.1 SFT 有监督微调

SFT supervised fine-tuning 有监督微调,也叫作 instruction tuning 指令微调。一对标注数据一般包含一个提示和一个答案,训练时只对答案部分进行反向传播调优网络。一开始使用了公开的指令调优数据;在实验过程中发现,高质量的标注数据可有效提升模型效果,不需要太多标注,只需要上万条高质量数据即可达到很好效果,最终使用 27,540 个标注数据。从而把更多精力用于 RLHF 标注。

4.2 RLHF 人类反馈的强化学习

人类反馈的强化学习 RLHF(Reinforcement Learning with Human Feedback)用于对齐模型行为和人类偏好,简单地说,就是让标注者选择他们喜欢的两个模型输出中的哪一个。随后用标注数据训练奖励模型,该模型用于后续对偏好进行预测。

4.2.1 人类偏好的数据收集

标注过程如下:首先要求注释者编写提示,然后根据要求在两个模型的返回结果之间进行选择。除了选择哪个更好,还要求他们标记对更喜欢答案的喜爱程度:明显更好,更好,稍微更好,或者可以忽略/不确定。

标注关注答案”有用性“和”安全性“,在安全方面,比如:用户提问“怎么做炸弹”返回的答案就可能是不安全的。安全性标注包括三个选项:优选答案安全另一个不安全;答案都不安全;答案都安全。这里认为人们会优选更安全的答案。

表-6 展示了标注的数据和其它开源数据集的比较结果。可以看到:摘要和在线论坛数据的提示通常较长,而对话式的提示通常较短。与现有的开源数据集相比,文中收集的偏好数据具有更多的对话轮次,并且平均时间更长。

在这里插入图片描述

4.2.2 奖励模型

奖励模型的输入是:提示、模型响应(包括之前的上下文),输出是标量分数以指示模型生成的质量(有用性和安全性)。利用模型响应分数作为奖励,在后续的 RLHF 期间优化 Llama 2-Chat。

为了解决有用性和安全性有时相互抵消的问题,实验训练了两个单独的奖励模型,一个针对有用性进行优化,另一种针对安全性进行优化。另外,使用预训练的聊天模型初始化奖励模型,使模型都受益于预训练中获得的知识;模型架构和超参数与预训练语言模型相同,只是将下一个标记预测的分类头替换为用于输出标量奖励的回归头。

最终训练模型时使用了开源标注数据和新的标注数据。
在这里插入图片描述
从图-6中可以看到,在逐步收集数据过程中模型性能的变化:更多的数据和更大的模型会提高准确性,如果有更多数据,模型性能还可能进一步提升。后续实验也证明,在其他条件相同的情况下,奖励模型的改进可以直接转化为 Llama 2-Chat 的改进。

4.2.3 迭代微调

随着得到更多批次的偏好数据标注,通过训练更好的奖励模型并收集更多提示。从逐步训练迭代模型:从 RLHF-V1 … 到 RLHF-V5。这里使用了两种算法:近端策略优化 PPO 和 拒绝采样微调 Rejection Sampling fine-tuning。

在 RLHF (V4) 之前,仅使用拒绝采样微调,之后,将两者结合起来,在再次采样之前在生成的拒绝采样检查点之上应用 PPO。从而在探索和当前最优策略之间取得平衡。
图-8展示了温度的影响:更高的温度将对更多样化的输出进行采样,最佳温度是 T ∈ [1.2, 1.3]。
在这里插入图片描述

拒绝采样微调
从模型中采样 K 个输出,并根据奖励选择最佳候选者,然后使用选定的输出进行梯度更新。对于每个提示,奖励分数最高的样本被认为是新的金标准。

PPO 近端策略优化
PPO的优化目标是:最终通过训练模型得到策略 π,以最大化奖励 R。

arg ⁡ max ⁡ π E p ∼ D , g ∼ π [ R ( g ∣ p ) ] \arg \max _{\pi} \mathbb{E}_{p \sim \mathcal{D}, g \sim \pi}[R(g \mid p)] argπmaxEpD,gπ[R(gp)]

其中 R 是 奖励,D 是数据集,p是prompt,通过策略 π 产生 g。

最终的奖励,还考虑了当前策略与初始策略的差异作为惩罚项(使用KL散度计算),以避免过大的调整,保证了训练的稳定性。

R ( g ∣ p ) = R ~ c ( g ∣ p ) − β D K L ( π θ ( g ∣ p ) ∥ π 0 ( g ∣ p ) ) R(g \mid p)=\tilde{R}_{c}(g \mid p)-\beta D_{K L}\left(\pi_{\theta}(g \mid p) \| \pi_{0}(g \mid p)\right) R(gp)=R~c(gp)βDKL(πθ(gp)π0(gp))

另外,这里的奖励函数 Rc 综合了可用性和安全性。

4.3 多轮一致性

文中提出了 Ghost Attention (GAtt),这种微调使数据更关注多轮对话,而不会快速忘记早期的内容。请注意:这里的 Attention 不是对模型 Transformer 结构中注意力的优化。该方法让模型更注重第一轮对话,比如:请扮演XXX,用法语回答。其效果如下,右侧使用了 Gattr,可以看到,它更容易接受初始设置的”用表情回答“。
在这里插入图片描述

4.4 RLHF 结果

在这里插入图片描述

图-11 展示了 Llama 2-Chat 与 ChatGPT 相比的获胜率百分比,多次迭代微调后的演变结果。左侧图的判断标准是文中的奖励模型,可能对文中的模型有利,右侧的判断标准是GPT-4,更为中立。RLHF-V3 后文中模型在两个轴上都优于 ChatGPT(无害性和有用性 >50%)。

[图片上传失败...(image-ae0aa9-1695215349343)]

图-12展示了 Llama-2 各个版本与其它模型在人工评测方面的对比结果,从最右图可以看到,Llama-2 70B-chat 与 ChatGPT gpt-3.5-turbo-0301 效果相当,或者说已经超过了 ChatGPT 3.5。(图中的 tie 指平局率)

更多推荐

Python开发利器之VS Code

Python官方提供了一个Python集成开发环境(IDE):IDLE(IntegratedDevelopmentandLearningEnvironment)。它提供了一个图形用户界面,可以让开发者编写、调试和执行Python程序。IDLE包含Python解释器、代码编辑器、调试器和文件浏览器等工具。IDLE非常适合

爬虫技术对携程网旅游景点和酒店信息的数据挖掘和分析应用

导语爬虫技术是一种通过网络爬取目标网站的数据并进行分析的技术,它可以用于各种领域,如电子商务、社交媒体、新闻、教育等。本文将介绍如何使用爬虫技术对携程网旅游景点和酒店信息进行数据挖掘和分析,以及如何利用Selenium库和代理IP技术实现爬虫程序。概述携程网是在线旅行服务平台,提供酒店预订、机票预订、旅游度假、商旅管理

学习笔记 --- RabbitMQ

简介RabbitMQ是一款开源的消息队列中间件,它实现了高级消息队列协议(AMQP)标准。作为一个消息代理,RabbitMQ可以在应用程序之间可靠地传递和存储消息,并支持多种消息传递模式。基本概念和特性消息:在RabbitMQ中,消息是传输的基本单位。它由消息体和可选的属性组成,消息体是要传递的实际数据,而属性则包含有

容器管理工具 Docker生态架构及部署

目录一、Docker生态架构1.1DockerContainersAreEverywhere1.2生态架构1.2.1DockerHost1.2.2Dockerdaemon1.2.3Registry1.2.4Dockerclient1.2.5Image1.2.6Container1.2.7DockerDashboard1

VL系列 Exchanging-based Multimodal Fusion with Transformer 论文阅读笔记

多模态融合Exchanging-basedMultimodalFusionwithTransformer论文阅读笔记一、Abstract二、引言三、相关工作3.1深度多模态融合四、方法4.1低维投影和embedding归一化低维投影Embedding归一化4.2多模态交换Transformer基础CrossTransf

<git>如何快速上手并高效协同

git是什么?Git是一种分布式版本控制系统,用于跟踪计算机文件的变化和协调多个人之间的工作。它最初由LinusTorvalds于2005年创建,旨在管理Linux内核的开发。Git可以在本地计算机上存储完整的版本历史记录,并允许用户在不同的分支上进行开发和合并。它还提供了许多工具和命令,用于管理代码库、协作开发、解决

ClickHouse与Elasticsearch比较总结

目录背景分布式架构存储架构写入链路设计Elasticsearch再谈Schemaless查询架构计算引擎数据扫描再谈高并发性能测试日志分析场景access_log(数据量197921836)trace_log(数据量569816761)官方Ontime测试集用户画像场景(数据量262933269)二级索引点查场景(数据

分享从零开始学习网络设备配置--任务3.4 利用单臂路由实现部门间网络互访

任务描述某公司的管理员对部门划分了VLAN后,发现两个部门之间无法通信,但有时两个部门的员工需要进行通信,管理员现要通过简单的方法来实现此功能。划分VLAN之后,VLAN之间是不能通信的,使用路由器的单臂路由功能可以解决这个问题。任务要求(1)利用单臂路由实现部门间网络互访,网络拓扑图如图。(2)在交换机SWA上划分V

Canal实现Mysql数据同步至Redis、Elasticsearch

文章目录1.Canal简介1.1MySQL主备复制原理1.2canal工作原理2.开启MySQLBinlog3.安装Canal3.1下载Canal3.2修改配置文件3.3启动和关闭4.SpringCloud集成Canal4.1Canal数据结构![在这里插入图片描述](https://img-blog.csdnimg.

CGI与FastCGI的区别在哪里,FastCGI的应用场景讲解

🏆作者简介,黑夜开发者,CSDN领军人物,全栈领域优质创作者✌,CSDN博客专家,阿里云社区专家博主,2023年6月CSDN上海赛道top4。🏆数年电商行业从业经验,历任核心研发工程师,项目技术负责人。🎉欢迎👍点赞✍评论⭐收藏文章目录1.CGI和FastCGI1.1CGI1.2FastCGI1.3对比2.Fas

MySQL的高级SQL语句

目录一、高级SQL语句1、select查询表中一个或多个字段的数据2、distinct不显示重复的数据记录3、where有条件查询4、and与or且与或5、in显示在某个范围值内的字段的信息6、between显示两个值范围内的数据记录7、orderby对字段进行排序8、groupby对字段进行分组汇总9、having用

热文推荐