数据分析三剑客之Numpy

2023-09-13 16:07:24

数据分析三剑客:Numpy,Pandas,Matplotlib

1.简介

NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。

numpy是基于c语言开发,所以这使得numpy的运行速度很快,高效率运行就是numpy的一大优势。

首先·我们要导入numpy包,一般我们都把它命名为np:

In [1]: import numpy as np 

接着就可以生成一个numpy一维数组: 

In [2]: a = np.array([[1,2,3]],dtype=np.int32)
In [3]: a
Out[3]: array([1, 2, 3]) 

numpy中定义的最重要的数据结构是称为ndarray的n维数组类型,这个结构引用了两个对象,一块用于保存数据的存储区域和一个用于描述元素类型的dtype对象: 

2.WHY?

二维数组的生成在python中我们还可以用到list列表,如果用list来表示[1,2,3],由于list中的元素可以是任何对象,所以list中保存的是对象的指针,如果要保存[1,2,3]就需要三个指针和三个整数对象,是比较浪费内存资源cpu计算时间的,而ndarray是一种保存单一数据类型的多维数组结构,在数据处理上比list列表要快上很多,在这里我们可以用%timeit命令来检测两者的数据处理速度:

In [9]: a = range(1000)
In [10]: %timeit[i**2 for i in a]
381 µs ± 6.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

In [11]: b = np.arange(1000)
In [12]: %timeit b**2
1.41 µs ± 18 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each) 

由于相同数据大小的array运算直接作用到元素级上这一numpy特性,结果显而易见,在数据处理上numpy数组比使用for循环的list列表快的不是一点两点。 

3.常用操作

这里生成一个3×3的矩阵作为例子:

In [2]: data = np.array([[1,2,3],[4,5,6],[7,8,9]]) # 等价于data=np.arange(1,10).reshape(3,3)
In [3]: data
Out[3]:
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]]) 

查看矩阵信息:

In [6]: data.shape    # 返回元组,表示n行n列
Out[6]: (3, 3)

In [7]: data.dtype    # 返回数组数据类型
Out[7]: dtype('int32')

In [8]: data.ndim    # 返回是几维数组
Out[8]: 2 

转换数据类型:

In [11]: a = data.astype(float)    # 拷贝一份新的数组

In [12]: a.dtype
Out[12]: dtype('float64')

数组之间的计算:

In [15]: data+data
Out[15]:
array([[ 2,  4,  6],
       [ 8, 10, 12],
       [14, 16, 18]])

In [16]: data*data
Out[16]:
array([[ 1,  4,  9],
       [16, 25, 36],
       [49, 64, 81]])

可以看出相同规格的数组计算是直接作用在其元素级上的,那不同的规格的数组是否能进行运算呢,我们来看下这个例子:

In [18]: data1 = np.array([[1,2],[1,2]])    #生成一个2x2numpy数组

In [19]: data+data1
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-19-f2592a975589> in <module>()
----> 1 data+data1

ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

我们可以看出不同规格的数组一起计算的话是会报出广播错误的,那是不是可以下结论了,别急我们再来看下方两个特殊例子:

In [20]: data2 = np.array([[1,2,3]])

In [21]: data + data2
Out[21]:
array([[ 2,  4,  6],
       [ 5,  7,  9],
       [ 8, 10, 12]])

In [22]: data3 = np.array([[1],[2],[3]])

In [23]: data+data3
Out[23]:
array([[ 2,  3,  4],
       [ 6,  7,  8],
       [10, 11, 12]])

data2数组的列数量与data数组相等,data3数组的行数量与data数组相等,这两个numpy数组虽然规格与data数组不一样,但却依然可以与data数组进行运算。

数组的切片:

In [24]: data[:2]    # 沿着行(axis=0)进行索引
Out[24]:
array([[1, 2, 3],
       [4, 5, 6]])

In [25]: data[:2,:2]    # 先沿着行(axis=0)进行索引,再沿着列(axis=1)进行索引
Out[25]:
array([[1, 2],
       [4, 5]])

In [26]: data[1,0:2]    # 下标是从0开始
Out[26]: array([4, 5])

这里需要注意的是,切片操作是在原始数组上创建一个视图view,这只是访问数组数据的一种方式。 因此原始数组不会被复制到内存中,传递的是一个类似引用的东西,与上面的astype()方法是两种不同的拷贝方式,这里我们来看一个例子:

In [32]: a = data[1]

In [33]: a
Out[33]: array([4, 5, 6])

In [34]: a[:] = 0

In [35]: data
Out[35]:
array([[1, 2, 3],
       [0, 0, 0],
       [7, 8, 9]])

当切片对象a改变时,data的对应值也会跟着改变,这是在我们日常数据处理中有时会疏忽的一个点,最安全的复制方法是使用

copy() 方法进行浅拷贝:

In [36]: a = data[1].copy()

In [37]: a
Out[37]: array([0, 0, 0])

In [38]: a[:]=9

In [39]: data
Out[39]:
array([[1, 2, 3],
       [0, 0, 0],
       [7, 8, 9]])

数组的布尔索引:

In [43]: data
Out[43]:
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])

In [44]: data>3
Out[44]:
array([[False, False, False],
       [ True,  True,  True],
       [ True,  True,  True]])

In [45]: data[data>3]    # 找出大于3的元素
Out[45]: array([4, 5, 6, 7, 8, 9])

数组的逻辑表达处理:

In [46]: np.where(data>3,1,0)    # 大于3的标记为1,小于等于3的标记为0
Out[46]:
array([[0, 0, 0],
       [1, 1, 1],
       [1, 1, 1]])

数组的常用统计操作:

In [47]: data.mean(axis=0)    # 沿着行(axis=0)进行索引,求出其平均值
Out[47]: array([4., 5., 6.])
In [49]: data.std()    # 求出全部元素的方差
Out[49]: 2.581988897471611

In [50]: (data>3).sum()    # 统计数组中元素大于3的个数
Out[50]: 6

In [51]: data.any()    # 数组中是否存在一个或多个true
Out[51]: True

In [52]: data.all()    # 数组中是否全部数都是true
Out[52]: True
In [53]: data.cumsum(0)    # 沿着行(axis=0)进行索引,进行累加
Out[53]:
array([[ 1,  2,  3],
       [ 5,  7,  9],
       [12, 15, 18]], dtype=int32)

In [54]: data.cumprod(1)    # 沿着列(axis=1)进行索引,进行累乘
Out[54]:
array([[  1,   2,   6],
       [  4,  20, 120],
       [  7,  56, 504]], dtype=int32)

数组的排序操作:

In [55]: data=np.random.randn(4,4)

In [56]: data
Out[56]:
array([[ 1.58669867,  1.57692769, -1.85828013,  1.17201164],
       [ 1.68160714, -0.83957549, -0.33771694, -0.33782379],
       [-0.03148106, -0.97819034,  0.51126626, -0.08184963],
       [-0.02822319, -0.31934723,  0.70764701,  0.80444954]])

In [57]: data.sort(0)    # 沿着行(axis=0)进行索引,并进行升序排序

In [58]: data
Out[58]:
array([[-0.03148106, -0.97819034, -1.85828013, -0.33782379],
       [-0.02822319, -0.83957549, -0.33771694, -0.08184963],
       [ 1.58669867, -0.31934723,  0.51126626,  0.80444954],
       [ 1.68160714,  1.57692769,  0.70764701,  1.17201164]])

In [59]: data[::-1]    # 降序操作
Out[59]:
array([[ 1.68160714,  1.57692769,  0.70764701,  1.17201164],
       [ 1.58669867, -0.31934723,  0.51126626,  0.80444954],
       [-0.02822319, -0.83957549, -0.33771694, -0.08184963],
       [-0.03148106, -0.97819034, -1.85828013, -0.33782379]])

注意:直接调用数组的方法的排序将直接改变数组而不会产生新的拷贝。

矩阵运算:

In [62]: x=np.arange(9).reshape(3,3)

In [63]: x
Out[63]:
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])

In [64]: np.dot(x,x)    # 矩阵相乘
Out[64]:
array([[ 15,  18,  21],
       [ 42,  54,  66],
       [ 69,  90, 111]])

In [65]: x.T    # 矩阵转置
Out[65]:
array([[0, 3, 6],
       [1, 4, 7],
       [2, 5, 8]])

在numpy中的linalg中有还有很多矩阵运算,比如svd分解,qr分解,cholesky分解等等。

numpy数据的读取和保存:

In [68]: np.save('name',data)

In [69]: np.load('name.npy')
Out[69]:
array([[-0.03148106, -0.97819034, -1.85828013, -0.33782379],
       [-0.02822319, -0.83957549, -0.33771694, -0.08184963],
       [ 1.58669867, -0.31934723,  0.51126626,  0.80444954],
       [ 1.68160714,  1.57692769,  0.70764701,  1.17201164]])

更多推荐

RabbitMQ

1.初识MQ1.1.同步和异步通讯微服务间通讯有同步和异步两种方式:同步通讯:就像打电话,需要实时响应。异步通讯:就像发邮件,不需要马上回复。两种方式各有优劣,打电话可以立即得到响应,但是你却不能跟多个人同时通话。发送邮件可以同时与多个人收发邮件,但是往往响应会有延迟。1.1.1.同步通讯我们之前学习的Feign调用就

安卓埋点策略+Retrofit上传埋点数据

安卓埋点在企业级安卓项目中,埋点是一项重要的技术,用于收集用户行为数据以进行分析和改进产品。以下是一个常见的安卓企业级项目开发中使用的埋点方案:定义埋点事件:首先,确定需要埋点的关键事件,如页面访问、按钮点击、数据提交等。为每个事件定义唯一的标识符或名称。埋点代码插入:在关键事件的代码位置插入埋点代码,以便在事件发生时

Windows【工具 04】WinSW官网使用说明及实例分享(将exe和jar注册成服务)实现服务器重启后的服务自动重启

官方Github;官方下载地址。没有Git加速的话很难下载,分享一下发布日期为2023.01.29的当前最新稳定版v2.12.0网盘连接。包含文件:WinSW-x64.exesample-minimal.xmlsample-allOptions.xml链接:https://pan.baidu.com/s/1sN3hL5

GaussDB OLTP 云数据库配套工具DAS

目录一、前言二、DAS的定义1、DAS的定义2、DAS功能特点三、DAS应用场景1、标准版2、企业版四、操作示例(标准版)1、登录华为控制台登录,输入账号密码2、新增数据库实例链接3、新建对象4、SQL操作5、导入导出五、小结一、前言传统的数据库管理软件,不仅需要下载安装、功能还比较单一,而且已经滞后于云服务的发展模式

让项目顺利上线:做好转测试与上线准备

转测试转测试是项目上线前最后一道坎,需求全部做完并自测后,项目就进入了转测试阶段。很多没想到的问题都会在这个阶段涌现出来,这个阶段大家都会很辛苦,通常都会加班加点。为了缓解这个阶段的压力,我们需要做以下几个改进:一、提前做测试把一些可提前做的事情放到转测试之前做。比如:UI设计师正常是在转测试后来验收视觉效果。但项目周

一文读懂SQL的增删改查(基础教程)

前言一、一些最重要的SQL命令二、查询(SELECT)1、查询所有列2、查询指定列3、查询并去重(DISTINCT)4、按条件查询where5、SQLAND&OR运算符6、SQLORDERBY关键字7、SQLLIMIT关键字8、SQLLIKE操作符9、SQLIN操作符9、SQLBETWEEN操作符三、插入(INSERT

黑马JVM总结(十七)

(1)G1_简介下面介绍一种Grabageone的垃圾回收器,在jdk9的时候称为默认的回收器,废除了之前的CMS垃圾回收器,它的内部也是并发的垃圾回收器我们可以想到堆内存过大,肯定会导致回收速度变慢,因为要涉及到对象的复制、标记,内存过大,对速度会产生影响,划分为小的区域进行管理,可以进行一些优化,标记和复制的速度在

GaussDB之应用无损透明(ALT)

1.背景GaussDB作为一款企业级分布式数据库,提供了“同城跨AZ双活、两地三中心、双集群强一致”等极致的高可用容灾能力。当某个数据库节点由于故障无法对外提供服务时,为了继续保证数据库服务的可用性,JDBC驱动会将业务后续的数据库连接请求发送到其它可用节点上。但故障发生后,已经与故障节点建立会话的连接无法自动切换到可

手撕排序之堆排序

一、概念:什么是逻辑结构、物理结构?逻辑结构:是我们自己想象出来的,就像内存中不存在一个真正的树物理结构(存储结构):实际上在内存中存储的形式。堆的逻辑结构是一颗完全二叉树堆的物理结构是一个数组之前讲过二叉树可以用两种结构进行表示。第一种就是链式结构,将一个一个结点进行链接。第二种就是用数组表示。数组表示意味着我们就是

Godot配置C#语言编写脚本(使用VSCode作为外部编辑器)

文章目录Godot部分查看VSCode的所在位置配置外部编辑器配置VSCode编写脚本中文注释其他文章字符编码Godot部分打开编辑器-编辑器设置;查看VSCode的所在位置右键单击你的VScode快捷方式,选择属性。这里的目标就是你的VSCode所在的位置。配置外部编辑器在编辑器设置里找到.NET-编辑器-Exter

全国职业技能大赛云计算--高职组赛题卷②(容器云)

全国职业技能大赛云计算--高职组赛题卷②(容器云)第二场次题目:容器云平台部署与运维任务1DockerCE及私有仓库安装任务(5分)任务2基于容器的web应用系统部署任务(15分)任务3基于容器的持续集成部署任务(15分)任务4Kubernetes容器云平台部署与运维(15分,本任务只公布考试范围,不公布赛题)需要环境

热文推荐