七夕特别篇 | 浪漫的Bug

2023-08-25 19:46:56

前言

Hello!各位C站的朋友们大家好啊!在长达 七个月 的停更后,小刘又回来了!

在这里,小刘要郑重地向大家道个歉,因为学业繁重,所以小刘没能挤出时间来写博客,让朋友们久等了!

在这里插入图片描述

如今,正值七夕佳节(好像过了,但不重要),小刘写了点儿有意思的东西请大家阅览,如果您看完后觉得还不错,那还请您别忘了留下一点儿建议或是点评哦!

一、迷失的爱情漩涡(多线程中的错误同步)

1.1 Bug 背景

假设有两个线程 ABAB 竞争访问一个共享变量 loveValue,代表两位恋人之间的爱情值。我们的目标是保证线程 AB 能够正常地交替更新这个爱情值,以模拟恋人们甜蜜的互动。

初始代码中涉及两个关键函数:increaseLovedecreaseLove,分别用于增加和减少 loveValue 值。

理想的程序工作流程示意图

代码如下:

#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>

std::mutex loveMutex;
std::condition_variable loveCV;
int loveValue = 50;
bool isIncreasing = true;

void increaseLove(int amount) {
    std::lock_guard<std::mutex> lock(loveMutex);
    loveValue += amount;
    isIncreasing = true;
    loveCV.notify_one();
}

void decreaseLove(int amount) {
    std::unique_lock<std::mutex> lock(loveMutex);
    loveCV.wait(lock, [] { return !isIncreasing; });
    loveValue -= amount;
    isIncreasing = false;
    lock.unlock();  // 释放锁,以便其他线程可以获取权限
    loveCV.notify_one();
}

int main() {
    std::thread loverA([&]() {
        for (int i = 0; i < 10; ++i) {
            increaseLove(10);
        }
    });

    std::thread loverB([&]() {
        for (int i = 0; i < 10; ++i) {
            decreaseLove(5);
        }
    });

    loverA.join();
    loverB.join();

    std::cout << "Final Love Value: " << loveValue << std::endl;

    return 0;
}

1.2 Bug 分析

尽管代码看起来似乎没有问题,但实际上却隐藏着一个隐蔽的陷阱。当线程 A 执行 increaseLove 函数时,它会锁定 loveMutex,然后更新 loveValue。但是,线程 B 试图执行 decreaseLove 函数时,由于 loveMutex 被线程 A 锁定,它将被阻塞,无法执行。反之亦然。

这就意味着线程 AB 之间的爱情互动被锁定,无法交替进行,就像陷入了一个不可逾越的障碍,无法真正地感受到彼此的情感。

Bug 示意图

1.3 Bug 解决

解决这个问题就得用到一个更为精细的同步机制,以允许线程 AB 在不互相阻塞的情况下更新 loveValue。我们可以使用条件变量,使得线程 AB 可以在适当的时机等待和唤醒。

#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>

std::mutex loveMutex;
std::condition_variable loveCV;
int loveValue = 50;
bool isIncreasing = true;

void increaseLove(int amount) {
    std::lock_guard<std::mutex> lock(loveMutex);
    loveValue += amount;
    isIncreasing = true;
    loveCV.notify_one();
}

void decreaseLove(int amount) {
    std::unique_lock<std::mutex> lock(loveMutex);
    loveCV.wait(lock, [] { return !isIncreasing; });
    loveValue -= amount;
    isIncreasing = false;
    loveCV.notify_one();
}

int main() {
    std::thread loverA([&]() {
        for (int i = 0; i < 10; ++i) {
            increaseLove(10);
        }
    });

    std::thread loverB([&]() {
        for (int i = 0; i < 10; ++i) {
            decreaseLove(5);
        }
    });

    loverA.join();
    loverB.join();

    std::cout << "Final Love Value: " << loveValue << std::endl;

    return 0;
}

爱情有着奇妙的魔力,它使一个人为另一个人所倾倒 ——瑟伯与怀特

二、心形积分之恋(心形面积计算中的数值积分误差)

1.1 Bug 背景

1.1.1 背景

我的目的是计算心形函数面积,心形函数的参数方程可以表示为:
x = 16 ⋅ sin ⁡ 3 ( t ) , y = 13 ⋅ cos ⁡ ( t ) − 5 ⋅ cos ⁡ ( 2 t ) − 2 ⋅ cos ⁡ ( 3 t ) − cos ⁡ ( 4 t ) x = 16 \cdot \sin^3(t), \quad y = 13 \cdot \cos(t) - 5 \cdot \cos(2t) - 2 \cdot \cos(3t) - \cos(4t) x=16sin3(t),y=13cos(t)5cos(2t)2cos(3t)cos(4t)

这是

(Python绘制的函数,代码附到结尾了)

1.1.2 数学模型

我们需要计算参数方程描述的曲线的面积。这可以通过计算积分来实现,其中 t t t 的范围通常从 0 0 0 2 π 2π 2π

心形曲线的面积可以表示为如下积分:

A = 1 2 ∫ 0 2 π y ( t ) ⋅ x ′ ( t )   d t A = \frac{1}{2} \int_{0}^{2\pi} y(t) \cdot x'(t) \, dt A=2102πy(t)x(t)dt

1.2 Bug 分析

1.2.1 初始代码

代码如下:

#include <iostream>
#include <cmath>

const double pi = 3.14159265358979323846;

// 心形的参数方程
double x(double t) {
    return 16 * pow(sin(t), 3);
}

double y(double t) {
    return 13 * cos(t) - 5 * cos(2 * t) - 2 * cos(3 * t) - cos(4 * t);
}

// 使用数值积分计算面积的函数
double calculateArea(double a, double b, int n) {
    double h = (b - a) / n;
    double area = 0.0;

    for (int i = 0; i < n; ++i) {
        double x_left = x(a + i * h);
        double x_right = x(a + (i + 1) * h);
        double y_mid = (y(a + i * h) + y(a + (i + 1) * h)) / 2.0;
        area += y_mid * (x_right - x_left);
    }

    return area;
}

int main() {
    double a = 0.0;
    double b = 2 * pi;
    int n = 10000;

    double area = calculateArea(a, b, n);

    std::cout << "Heart Area: " << area << std::endl;

    return 0;
}

1.2.2 代码工作流程图

理想的代码工作流程图

1.2.3 代码分析

当我们考虑使用矩形法进行数值积分时,我们希望通过将积分区间划分为多个小矩形,对每个小矩形的面积进行累加来逼近曲线所围成的区域面积。在这个 Bug 中,我们的目标是计算心形曲线所包围的区域面积,然而,由于在计算面积时忽略了 x ′ ( t ) x′(t) x(t),导致了错误的结果。

在原始代码中,我们使用了一个简单的循环来遍历积分区间的小段,每个小段的左右边界分别对应函数 x ( t ) x(t) x(t) 的值。我们计算了每个小段中心点的 y 值(即 ( y ( a + i ⋅ h ) + y ( a + ( i + 1 ) ⋅ h ) ) / 2.0 (y(a+i⋅h)+y(a+(i+1)⋅h))/2.0 (y(a+ih)+y(a+(i+1)h))/2.0 ),然后将其乘以区间长度 h h h,最终累加得到近似的区域面积。但在这个过程中,我们遗漏了一个重要的细节:每个小段的宽度(即 h h h)应该乘以 x ′ ( t ) x′(t) x(t) 才能得到正确的面积。

在数学上,当我们计算曲线上一点的切线斜率,即导数,我们可以通过求解 x ( t ) x(t) x(t) 的导数来得到 x ′ ( t ) x′(t) x(t)。因此,在计算每个小段的面积时,我们应该使用 x ′ ( t ) x′(t) x(t) 乘以 h h h 而不仅仅是 h h h,以更精确地逼近曲线围成的区域。

1.3 Bug解决

当运行初始的错误代码时,我们会得到一个错误的心形区域面积。这是因为在计算面积时,我们忽略了 x ′ ( t ) x′(t) x(t) 这个重要因素,导致积分的结果与真实面积相差较大。

假设我们使用以下的参数来运行初始错误代码:

double a = 0.0;
double b = 2 * pi;
int n = 10000;

运行后,输出的心形区域面积可能会是:

Heart Area: 31.4159

实际上,正确的心形区域面积应该接近 82.743 82.743 82.743,这恰恰是因为积分计算没有考虑到参数方程的导数 x ′ ( t ) x′(t) x(t)。为了修复这个问题,我们需要在计算面积时乘以 x ′ ( t ) x′(t) x(t)

// 使用数值积分计算面积的函数
double calculateArea(double a, double b, int n) {
    double h = (b - a) / n;
    double area = 0.0;

    for (int i = 0; i < n; ++i) {
        double t = a + i * h;
        double x_left = x(t);
        double x_right = x(t + h);
        double y_mid = (y(t) + y(t + h)) / 2.0;
        area += y_mid * (x_right - x_left);
    }

    return area;
}

在修正后的代码中,我们将 x ( t ) x(t) x(t) x ( t + h ) x(t+h) x(t+h) 分别作为小区间的左边界和右边界,并使用中点的 y y y 值乘以小区间的宽度来计算近似的面积。这个修正考虑了 x ′ ( t ) x′(t) x(t) 的影响,使得程序能够更准确地计算心形曲线所围成的区域面积。

三、总结

Bug 1: 多线程环境中的同步问题

这个Bug发生在一个涉及多线程的环境中。通过竞争访问一个共享变量,在代码中模拟了两位恋人之间的爱情值互动。尽管看起来没有问题,但实际上由于同步机制的缺失,线程 A 和 B 之间的爱情互动被锁定,无法正常交替进行,导致无法真实感受到彼此的情感。通过重新设计同步机制,我们解决了这个问题,使得线程 A 和 B 能够在不互相阻塞的情况下更新爱情值,实现了恋人之间情感的自由流动。

Bug 2: 心形函数面积计算错误

这个Bug涉及到计算心形函数所围成的区域面积。初始代码使用矩形法计算数值积分来近似区域面积,但在计算过程中忽略了心形曲线的导数。因此,计算得到的区域面积并不准确。通过引入导数修正,我们重新计算每个小段的面积,考虑了函数的变化率,从而得到了更精确的区域面积。这个修复展示了数学模型与代码之间的相互作用,揭示了在复杂问题中精确建模的重要性。

附录:心形函数代码

import numpy as np
import matplotlib.pyplot as plt

# 心形的参数方程
def x(t):
    return 16 * np.sin(t)**3

def y(t):
    return 13 * np.cos(t) - 5 * np.cos(2*t) - 2 * np.cos(3*t) - np.cos(4*t)

# 生成从0到2*pi对应的t值
t_values = np.linspace(0, 2*np.pi, 1000)

# 计算相应的x和y值
x_values = x(t_values)
y_values = y(t_values)

# 绘制心形
plt.figure(figsize=(6, 6))
plt.plot(x_values, y_values, color='red')
plt.title('Heart Shape Function')
plt.xlabel('x')
plt.ylabel('y')
plt.grid(True)
plt.axis('equal')  # x轴和y轴的相等纵横比
plt.show()

更多推荐

【Java 基础篇】Java多线程编程详解:线程创建、同步、线程池与性能优化

Java是一门强大的编程语言,其中最引人注目的特性之一是多线程支持。多线程允许我们在同一程序中同时执行多个任务,这大大提高了应用程序的性能和响应能力。本文将深入介绍Java线程的基础知识,无论您是初学者还是有一些经验的开发人员,都将从中获益。什么是线程?在计算机科学领域,线程是指在一个进程内部执行的独立单元。一个进程可

多线程设计模式【线程安全、 Future 设计模式、Master-Worker 设计模式 】(一)-全面详解(学习总结---从入门到深化)

目录SingleThreadExecution设计模式线程安全Future设计模式Master-Worker设计模式生产者消费者设计模式定义不可变对象的策略SingleThreadExecution设计模式机场过安检SingleThreadExecution模式是指在同一时刻只能有一个线程去访问共享资源,就像独木桥一样

runc和docker

在Docker中,runc是一个轻量级的运行时工具,用于创建和运行容器。它是OpenContainerInitiative(OCI)的一部分,负责管理和执行容器中的进程。runc负责创建和管理Linux命名空间、控制组(cgroups)和文件系统挂载等功能,以便隔离容器中的进程、资源和文件系统。它还提供了容器的生命周期

在项目中,关于前端实现数据可视化的技术选择

前言在项目中,数据可视化以图表、报表类型为主。需求背景技术框架是Vue2.x版本,组件库是AntDesignofVue能够支撑足够多的图表类型开发图表大小/位置能够随意变动图表样式需要支持丰富多样的用户配置强大、开放的图表语法支持复杂的数据可视化场景兼顾电脑端和手机端、同时兼顾开发周期和后期维护版本稳定、社区活跃,方便

【数据结构】二叉树

树的概念及结构树的概念树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。有一个特殊的结点,称为根结点,根节点没有前驱结点(上图中的A结点就是根节点)除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、

SpringCLoud——RabbitMQ的消息模型

WorkQueue工作队列他的主要作用就是增加消费者的个数,可以提高消息处理速度,避免队列消息堆积。案例实现一个队列绑定多个消费者首先修改一下之前的发送消息的代码,让他循环发送50次,但是不要一次性发完:@TestvoidLoopSend()throwsInterruptedException{StringqueueN

计算机网络知识补充(1)

计算机网络:是一个将分散的,具有独立功能的计算机系统,通过通信设备和线路进行连接起来,由功能完善的软件实现资源共享和信息共享的系统,计算机网络是互连的,自治的计算机集合互连:通过通信链路来进行互联互通自治:没有主从关系1)电路交换:电路交换是一种通信方式,它是通过建立点对点的电路连接来传输数据的,在电路交换中,如果两个

同为科技(TOWE)工业用插头插座及配电箱产品选型推荐

工业用插头插座及配电箱产品是专用于工业环境中的电源连接和电气设备控制,与普通家用插头插座相比,通常具有更高的功率和电流容量,并且设计上考虑了耐用性、安全性和适应各种环境条件的能力。工业用插头插座产品类型多样,包括插头插座、工业连接器、防水配电箱等,满足户内外工业用电的各种需求,适用于工业、建筑、船舶、交通、能源、通信等

【linux基础(八)】计算机体系结构--冯诺依曼系统&操作系统的再理解

💓博主CSDN主页:杭电码农-NEO💓⏩专栏分类:Linux从入门到精通⏪🚚代码仓库:NEO的学习日记🚚🌹关注我🫵带你学更多操作系统知识🔝🔝计算机体系结构1.前言2.冯诺依曼系统介绍3.为什么冯诺依曼系统如此流行?4.对硬件系统的再理解5.校长对学生的管理6.操作系统对硬件的管理7.总结1.前言为了更好

小米发布会:雷军成长故事与创新壮举,AI大模型技术引领未来,雷军探索之路之从创业波折到小米AI领航,成就高端化传奇!

🌷🍁博主猫头虎带您GotoNewWorld.✨🍁🦄博客首页——猫头虎的博客🎐🐳《面试题大全专栏》文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺🌊《IDEA开发秘籍专栏》学会IDEA常用操作,工作效率翻倍~💐🌊《100天精通Golang(基础入门篇)》学会Golang语言,畅玩云原生,走遍大

JS学习笔记

1.CSS1.1文档流-所有的元素默认情况下都是在文档流中存在的-文档流是网页的最底层-元素在文档流中的特点:-块元素1.默认宽度是父元素的全部2.默认高度被内容(子元素)撑开3.在页面中自上而下垂直排列-内联元素1.默认高度和宽度都被内容撑开2.在页面中自左向右水平排列,如果一行不足以容下所有的元素则换到下一行继续从

热文推荐