GFS 分布式文件系统

2023-09-19 09:11:37

1、GlusterFS 概述

1.1 GlusterFS简介

GlusterFS 是一个开源的分布式文件系统。
由存储服务器、客户端以及NFS/Samba 存储网关(可选,根据需要选择使用)组成。
没有元数据服务器组件,这有助于提升整个系统的性能、可靠性和稳定性。
MFS
传统的分布式文件系统大多通过元服务器来存储元数据,元数据包含存储节点上的目录信息、目录结构等。这样的设计在浏览目录时效率高,但是也存在一些缺陷,例如单点故障。一旦元数据服务器出现故障,即使节点具备再高的冗余性,整个存储系统也将崩溃。而 GlusterFS 分布式文件系统是基于无元服务器的设计,数据横向扩展能力强,具备较高的可靠性及存储效率。

GlusterFS同时也是Scale-Out(横向扩展)存储解决方案Gluster的核心,在存储数据方面具有强大的横向扩展能力,通过扩展能够支持数PB存储容量和处理数千客户端。

GlusterFS支持借助TCP/IP或InfiniBandRDMA网络(一种支持多并发链接的技术,具有高带宽、低时延、高扩展性的特点)将物理分散分布的存储资源汇聚在一起,统一提供存储服务,并使用统一全局命名空间来管理数据。


1.2 GlusterFS特点

●扩展性和高性能
GlusterFS利用双重特性来提供高容量存储解决方案。
(1)Scale-Out架构允许通过简单地增加存储节点的方式来提高存储容量和性能(磁盘、计算和I/O资源都可以独立增加),支持10GbE和 InfiniBand等高速网络互联。
(2)Gluster弹性哈希(ElasticHash)解决了GlusterFS对元数据服务器的依赖,改善了单点故障和性能瓶颈,真正实现了并行化数据访问。GlusterFS采用弹性哈希算法在存储池中可以智能地定位任意数据分片(将数据分片存储在不同节点上),不需要查看索引或者向元数据服务器查询。

●高可用性
GlusterFS可以对文件进行自动复制,如镜像或多次复制,从而确保数据总是可以访问,甚至是在硬件故障的情况下也能正常访问。
当数据出现不一致时,自我修复功能能够把数据恢复到正确的状态,数据的修复是以增量的方式在后台执行,几乎不会产生性能负载。
GlusterFS可以支持所有的存储,因为它没有设计自己的私有数据文件格式,而是采用操作系统中主流标准的磁盘文件系统(如EXT3、XFS等)来存储文件,因此数据可以使用传统访问磁盘的方式被访问。

●全局统一命名空间
分布式存储中,将所有节点的命名空间整合为统一命名空间,将整个系统的所有节点的存储容量组成一个大的虚拟存储池,供前端主机访问这些节点完成数据读写操作。

●弹性卷管理
GlusterFS通过将数据储存在逻辑卷中,逻辑卷从逻辑存储池进行独立逻辑划分而得到。
逻辑存储池可以在线进行增加和移除,不会导致业务中断。逻辑卷可以根据需求在线增长和缩减,并可以在多个节点中实现负载均衡。
文件系统配置也可以实时在线进行更改并应用,从而可以适应工作负载条件变化或在线性能调优。

●基于标准协议
Gluster 存储服务支持 NFS、CIFS、HTTP、FTP、SMB 及 Gluster原生协议,完全与 POSIX 标准(可移植操作系统接口)兼容。
现有应用程序不需要做任何修改就可以对Gluster 中的数据进行访问,也可以使用专用 API 进行访问。


1.3 GlusterFS 术语

●Brick(存储块):
指可信主机池中由主机提供的用于物理存储的专用分区,是GlusterFS中的基本存储单元,同时也是可信存储池中服务器上对外提供的存储目录。
存储目录的格式由服务器和目录的绝对路径构成,表示方法为 SERVER:EXPORT,如 192.168.80.10:/data/mydir/。

●Volume(逻辑卷):
一个逻辑卷是一组 Brick 的集合。卷是数据存储的逻辑设备,类似于 LVM 中的逻辑卷。大部分 Gluster 管理操作是在卷上进行的。

●FUSE:
是一个内核模块,允许用户创建自己的文件系统,无须修改内核代码。
伪文件系统

●VFS:
内核空间对用户空间提供的访问磁盘的接口。   虚拟端口

●Glusterd(后台管理进程):  服务端
在存储群集中的每个节点上都要运行。

GFS 以上虚拟文件系统

1.4 模块化堆栈式架构

GlusterFS 采用模块化、堆栈式的架构。
通过对模块进行各种组合,即可实现复杂的功能。例如 Replicate 模块可实现 RAID1,Stripe 模块可实现 RAID0, 通过两者的组合可实现 RAID10 和 RAID01,同时获得更高的性能及可靠性。

1.5 GlusterFS 的工作流程

(1)客户端或应用程序通过 GlusterFS 的挂载点访问数据。
(2)linux系统内核通过 VFS API 收到请求并处理。
(3)VFS 将数据递交给 FUSE 内核文件系统,并向系统注册一个实际的文件系统 FUSE,而 FUSE 文件系统则是将数据通过 /dev/fuse 设备文件递交给了 GlusterFS client 端。可以将 FUSE 文件系统理解为一个代理。
(4)GlusterFS client 收到数据后,client 根据配置文件的配置对数据进行处理。
(5)经过 GlusterFS client 处理后,通过网络将数据传递至远端的 GlusterFS Server,并且将数据写入到服务器存储设备上。


1.6 弹性 HASH 算法

弹性 HASH 算法是 Davies-Meyer 算法的具体实现,通过 HASH 算法可以得到一个 32 位的整数范围的 hash 值,
假设逻辑卷中有 N 个存储单位 Brick,则 32 位的整数范围将被划分为 N 个连续的子空间,每个空间对应一个 Brick。
当用户或应用程序访问某一个命名空间时,通过对该命名空间计算 HASH 值,根据该 HASH 值所对应的 32 位整数空间定位数据所在的 Brick。

#弹性 HASH 算法的优点:
保证数据平均分布在每一个 Brick 中。
解决了对元数据服务器的依赖,进而解决了单点故障以及访问瓶颈。


1.7 GlusterFS的卷类型

GlusterFS 支持七种卷,即分布式卷、条带卷、复制卷、分布式条带卷、分布式复制卷、条带复制卷和分布式条带复制卷。

●分布式卷(Distribute volume):
文件通过 HASH 算法分布到所有 Brick Server 上,这种卷是 GlusterFS 的默认卷;以文件为单位根据 HASH 算法散列到不同的 Brick,其实只是扩大了磁盘空间,如果有一块磁盘损坏,数据也将丢失,属于文件级的 RAID0, 不具有容错能力。
在该模式下,并没有对文件进行分块处理,文件直接存储在某个 Server 节点上。 由于直接使用本地文件系统进行文件存储,所以存取效率并没有提高,反而会因为网络通信的原因而有所降低。

#示例原理:
File1 和 File2 存放在 Server1,而 File3 存放在 Server2,文件都是随机存储,一个文件(如 File1)要么在 Server1 上,要么在 Server2 上,不能分块同时存放在 Server1和 Server2 上。

#分布式卷具有如下特点:
文件分布在不同的服务器,不具备冗余性。
更容易和廉价地扩展卷的大小。
单点故障会造成数据丢失。
依赖底层的数据保护。

#创建一个名为dis-volume的分布式卷,文件将根据HASH分布在server1:/dir1、server2:/dir2和server3:/dir3中
gluster volume create dis-volume server1:/dir1 server2:/dir2 server3:/dir3

●条带卷(Stripe volume):
类似 RAID0,文件被分成数据块并以轮询的方式分布到多个 Brick Server 上,文件存储以数据块为单位,支持大文件存储, 文件越大,读取效率越高,但是不具备冗余性。

#示例原理:
File 被分割为 6 段,1、3、5 放在 Server1,2、4、6 放在 Server2。

#条带卷特点:
数据被分割成更小块分布到块服务器群中的不同条带区。
分布减少了负载且更小的文件加速了存取的速度。
没有数据冗余。

#创建了一个名为stripe-volume的条带卷,文件将被分块轮询的存储在Server1:/dir1和Server2:/dir2两个Brick中
gluster volume create stripe-volume stripe 2 transport tcp server1:/dir1 server2:/dir2

●复制卷(Replica volume):
将文件同步到多个 Brick 上,使其具备多个文件副本,属于文件级 RAID 1,具有容错能力。因为数据分散在多个 Brick 中,所以读性能得到很大提升,但写性能下降。
复制卷具备冗余性,即使一个节点损坏,也不影响数据的正常使用。但因为要保存副本,所以磁盘利用率较低。

#示例原理:
File1 同时存在 Server1 和 Server2,File2 也是如此,相当于 Server2 中的文件是 Server1 中文件的副本。

#复制卷特点:
卷中所有的服务器均保存一个完整的副本。
卷的副本数量可由客户创建的时候决定,但复制数必须等于卷中 Brick 所包含的存储服务器数。
至少由两个块服务器或更多服务器。
具备冗余性。

#创建名为rep-volume的复制卷,文件将同时存储两个副本,分别在Server1:/dir1和Server2:/dir2两个Brick中
gluster volume create rep-volume replica 2 transport tcp server1:/dir1 server2:/dir2

●分布式条带卷(Distribute Stripe volume):
Brick Server 数量是条带数(数据块分布的 Brick 数量)的倍数,兼具分布式卷和条带卷的特点。 主要用于大文件访问处理,创建一个分布式条带卷最少需要 4 台服务器。

#示例原理:
File1 和 File2 通过分布式卷的功能分别定位到Server1和 Server2。在 Server1 中,File1 被分割成 4 段,其中 1、3 在 Server1 中的 exp1 目录中,2、4 在 Server1 中的 exp2 目录中。在 Server2 中,File2 也被分割成 4 段,其中 1、3 在 Server2 中的 exp3 目录中,2、4 在 Server2 中的 exp4 目录中。

#创建一个名为dis-stripe的分布式条带卷,配置分布式的条带卷时,卷中Brick所包含的存储服务器数必须是条带数的倍数(>=2倍)。Brick 的数量是 4(Server1:/dir1、Server2:/dir2、Server3:/dir3 和 Server4:/dir4),条带数为 2(stripe 2)
gluster volume create dis-stripe stripe 2 transport tcp server1:/dir1 server2:/dir2 server3:/dir3 server4:/dir4

创建卷时,存储服务器的数量如果等于条带或复制数,那么创建的是条带卷或者复制卷;如果存储服务器的数量是条带或复制数的 2 倍甚至更多,那么将创建的是分布式条带卷或分布式复制卷。

●分布式复制卷(Distribute Replica volume):
Brick Server 数量是镜像数(数据副本数量)的倍数,兼具分布式卷和复制卷的特点。主要用于需要冗余的情况下。

#示例原理:
File1 和 File2 通过分布式卷的功能分别定位到 Server1 和 Server2。在存放 File1 时,File1 根据复制卷的特性,将存在两个相同的副本,分别是 Server1 中的exp1 目录和 Server2 中的 exp2 目录。在存放 File2 时,File2 根据复制卷的特性,也将存在两个相同的副本,分别是 Server3 中的 exp3 目录和 Server4 中的 exp4 目录。

#创建一个名为dis-rep的分布式复制卷,配置分布式的复制卷时,卷中Brick所包含的存储服务器数必须是复制数的倍数(>=2倍)。Brick 的数量是 4(Server1:/dir1、Server2:/dir2、Server3:/dir3 和 Server4:/dir4),复制数为 2(replica 2)
gluster volume create dis-rep replica 2 transport tcp server1:/dir1 server2:/dir2 server3:/dir3 server4:/dir4

了解以上五个

●条带复制卷(Stripe Replica volume):
类似 RAID 10,同时具有条带卷和复制卷的特点。

●分布式条带复制卷(Distribute Stripe Replicavolume):
三种基本卷的复合卷,通常用于类 Map Reduce 应用。


2、部署 GlusterFS 群集

Node1节点:node1/192.168.10.13          磁盘:/dev/sdb1            挂载点:/data/sdb1
                                            /dev/sdc1                    /data/sdc1
                                            /dev/sdd1                    /data/sdd1
                                            /dev/sde1                    /data/sde1

Node2节点:node2/192.168.10.14          磁盘:/dev/sdb1            挂载点:/data/sdb1
                                            /dev/sdc1                    /data/sdc1
                                            /dev/sdd1                    /data/sdd1
                                            /dev/sde1                    /data/sde1

Node3节点:node3/192.168.10.15          磁盘:/dev/sdb1            挂载点:/data/sdb1
                                            /dev/sdc1                    /data/sdc1
                                            /dev/sdd1                    /data/sdd1
                                            /dev/sde1                    /data/sde1

Node4节点:node4/192.168.10.16          磁盘:/dev/sdb1            挂载点:/data/sdb1
                                            /dev/sdc1                    /data/sdc1
                                            /dev/sdd1                    /data/sdd1
                                            /dev/sde1                    /data/sde1

客户端节点:192.168.10.2 

----- 准备环境(所有node节点上操作) -----

2.1 关闭防火墙

systemctl stop firewalld
setenforce 0

2.2 磁盘分区,并挂载

vim /opt/fdisk.sh
#!/bin/bash
NEWDEV=`ls /dev/sd* | grep -o 'sd[b-z]' | uniq`
for VAR in $NEWDEV
do
   echo -e "n\np\n\n\n\nw\n" | fdisk /dev/$VAR &> /dev/null
   mkfs.xfs /dev/${VAR}"1" &> /dev/null
   mkdir -p /data/${VAR}"1" &> /dev/null
   echo "/dev/${VAR}"1" /data/${VAR}"1" xfs defaults 0 0" >> /etc/fstab
done
mount -a &> /dev/null

chmod +x /opt/fdisk.sh
cd /opt/
./fdisk.sh

2.3 修改主机名,配置/etc/hosts文件

#以Node1节点为例:
hostnamectl set-hostname node1
su

echo "192.168.10.13 node1" >> /etc/hosts
echo "192.168.10.14 node2" >> /etc/hosts
echo "192.168.10.15 node3" >> /etc/hosts
echo "192.168.10.16 node4" >> /etc/hosts


2.4 安装、启动GlusterFS(所有node节点上操作)

#将gfsrepo 软件上传到/opt目录下
cd /etc/yum.repos.d/
mkdir repo.bak
mv *.repo repo.bak

vim glfs.repo
[glfs]
name=glfs
baseurl=file:///opt/gfsrepo
gpgcheck=0
enabled=1

yum clean all && yum makecache

#yum -y install centos-release-gluster            #如采用官方 YUM 源安装,可以直接指向互联网仓库
yum -y install glusterfs glusterfs-server glusterfs-fuse glusterfs-rdma

systemctl start glusterd.service 
systemctl enable glusterd.service
systemctl status glusterd.service

故障原因是版本过高导致
yum remove glusterfs-api.x86_64 glusterfs-cli.x86_64 glusterfs.x86_64 glusterfs-libs.x86_64 glusterfs-client-xlators.x86_64 glusterfs-fuse.x86_64 -y

----- 添加节点到存储信任池中(在 node1 节点上操作) -----
#只要在一台Node节点上添加其它节点即可
gluster peer probe node1
gluster peer probe node2
gluster peer probe node3
gluster peer probe node4

#在每个Node节点上查看群集状态
gluster peer status


----- 创建卷 -----
#根据规划创建如下卷:
卷名称                 卷类型                Brick
dis-volume            分布式卷            node1(/data/sdb1)、node2(/data/sdb1)
stripe-volume        条带卷                node1(/data/sdc1)、node2(/data/sdc1)
rep-volume            复制卷                node3(/data/sdb1)、node4(/data/sdb1)
dis-stripe            分布式条带卷        node1(/data/sdd1)、node2(/data/sdd1)、node3(/data/sdd1)、node4(/data/sdd1)
dis-rep                分布式复制卷        node1(/data/sde1)、node2(/data/sde1)、node3(/data/sde1)、node4(/data/sde1)


2.5 创建分布式卷

#创建分布式卷,没有指定类型,默认创建的是分布式卷
gluster volume create dis-volume node1:/data/sdb1 node2:/data/sdb1 force    

#查看卷列表
gluster volume list

#启动新建分布式卷
gluster volume start dis-volume

#查看创建分布式卷信息
gluster volume info dis-volume

2.6 创建条带卷

#指定类型为 stripe,数值为 2,且后面跟了 2 个 Brick Server,所以创建的是条带卷
gluster volume create stripe-volume stripe 2 node1:/data/sdc1 node2:/data/sdc1 force
gluster volume start stripe-volume
gluster volume info stripe-volume


2.7 创建复制卷

#指定类型为 replica,数值为 2,且后面跟了 2 个 Brick Server,所以创建的是复制卷
gluster volume create rep-volume replica 2 node3:/data/sdb1 node4:/data/sdb1 force
gluster volume start rep-volume
gluster volume info rep-volume

2.8  创建分布式条带卷

#指定类型为 stripe,数值为 2,而且后面跟了 4 个 Brick Server,是 2 的两倍,所以创建的是分布式条带卷
gluster volume create dis-stripe stripe 2 node1:/data/sdd1 node2:/data/sdd1 node3:/data/sdd1 node4:/data/sdd1 force
gluster volume start dis-stripe
gluster volume info dis-stripe

2.9 创建分布式复制卷

指定类型为 replica,数值为 2,而且后面跟了 4 个 Brick Server,是 2 的两倍,所以创建的是分布式复制卷
gluster volume create dis-rep replica 2 node1:/data/sde1 node2:/data/sde1 node3:/data/sde1 node4:/data/sde1 force
gluster volume start dis-rep
gluster volume info dis-rep    

#查看当前所有卷的列表
gluster volume list


3、部署 Gluster 客户端

3.1 安装客户端软件

#将gfsrepo 软件上传到/opt目下 
cd /etc/yum.repos.d/
mkdir repo.bak
mv *.repo repo.bak

vim glfs.repo
[glfs]
name=glfs
baseurl=file:///opt/gfsrepo
gpgcheck=0
enabled=1

yum clean all && yum makecache

yum -y install glusterfs glusterfs-fuse

3.2 创建挂载目录

mkdir -p /test/{dis,stripe,rep,dis_stripe,dis_rep}
ls /test

3.3 配置 /etc/hosts 文件

echo "192.168.10.13 node1" >> /etc/hosts
echo "192.168.10.14 node2" >> /etc/hosts
echo "192.168.10.15 node3" >> /etc/hosts
echo "192.168.10.16 node4" >> /etc/hosts    

3.4 挂载 Gluster 文件系统

#临时挂载
mount.glusterfs node1:dis-volume /test/dis
mount.glusterfs node1:stripe-volume /test/stripe
mount.glusterfs node1:rep-volume /test/rep
mount.glusterfs node1:dis-stripe /test/dis_stripe
mount.glusterfs node1:dis-rep /test/dis_rep

df -Th

#永久挂载
vim /etc/fstab
node1:dis-volume        /test/dis                glusterfs        defaults,_netdev        0 0
node1:stripe-volume        /test/stripe            glusterfs        defaults,_netdev        0 0
node1:rep-volume        /test/rep                glusterfs        defaults,_netdev        0 0
node1:dis-stripe        /test/dis_stripe        glusterfs        defaults,_netdev        0 0
node1:dis-rep            /test/dis_rep            glusterfs        defaults,_netdev        0 0


3.5 测试 Gluster 文件系统

1.卷中写入文件,客户端操作
cd /opt
dd if=/dev/zero of=/opt/demo1.log bs=1M count=40
dd if=/dev/zero of=/opt/demo2.log bs=1M count=40
dd if=/dev/zero of=/opt/demo3.log bs=1M count=40
dd if=/dev/zero of=/opt/demo4.log bs=1M count=40
dd if=/dev/zero of=/opt/demo5.log bs=1M count=40

ls -lh /opt

cp /opt/demo* /test/dis
cp /opt/demo* /test/stripe/
cp /opt/demo* /test/rep/
cp /opt/demo* /test/dis_stripe/
cp /opt/demo* /test/dis_rep/

2.查看文件分布
#查看分布式文件分布
[root@node1 ~]# ls -lh /data/sdb1                    #数据没有被分片
总用量 160M
-rw-r--r-- 2 root root 40M 12月 18 14:50 demo1.log
-rw-r--r-- 2 root root 40M 12月 18 14:50 demo2.log
-rw-r--r-- 2 root root 40M 12月 18 14:50 demo3.log
-rw-r--r-- 2 root root 40M 12月 18 14:50 demo4.log
[root@node2 ~]# ll -h /data/sdb1
总用量 40M
-rw-r--r-- 2 root root 40M 12月 18 14:50 demo5.log

#查看条带卷文件分布
[root@node1 ~]# ls -lh /data/sdc1                    #数据被分片50% 没副本 没冗余
总用量 101M
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo1.log
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo2.log
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo3.log
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo4.log
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo5.log

[root@node2 ~]# ll -h /data/sdc1                    #数据被分片50% 没副本 没冗余
总用量 101M
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo1.log
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo2.log
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo3.log
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo4.log
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo5.log

#查看复制卷分布
[root@node3 ~]# ll -h /data/sdb1                    #数据没有被分片 有副本 有冗余     
总用量 201M
-rw-r--r-- 2 root root 40M 12月 18 14:51 demo1.log
-rw-r--r-- 2 root root 40M 12月 18 14:51 demo2.log
-rw-r--r-- 2 root root 40M 12月 18 14:51 demo3.log
-rw-r--r-- 2 root root 40M 12月 18 14:51 demo4.log
-rw-r--r-- 2 root root 40M 12月 18 14:51 demo5.log

[root@node4 ~]# ll -h /data/sdb1                    #数据没有被分片 有副本 有冗余
总用量 201M
-rw-r--r-- 2 root root 40M 12月 18 14:51 demo1.log
-rw-r--r-- 2 root root 40M 12月 18 14:51 demo2.log
-rw-r--r-- 2 root root 40M 12月 18 14:51 demo3.log
-rw-r--r-- 2 root root 40M 12月 18 14:51 demo4.log
-rw-r--r-- 2 root root 40M 12月 18 14:51 demo5.log

#查看分布式条带卷分布
[root@node1 ~]# ll -h /data/sdd1                    #数据被分片50% 没副本 没冗余
总用量 81M
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo1.log
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo2.log
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo3.log
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo4.log

[root@node2 ~]# ll -h /data/sdd1
总用量 81M
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo1.log
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo2.log
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo3.log
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo4.log

[root@node3 ~]# ll -h /data/sdd1
总用量 21M
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo5.log

[root@node4 ~]# ll -h /data/sdd1
总用量 21M
-rw-r--r-- 2 root root 20M 12月 18 14:51 demo5.log

#查看分布式复制卷分布                                #数据没有被分片 有副本 有冗余
[root@node1 ~]# ll -h /data/sde1
总用量 161M
-rw-r--r-- 2 root root 40M 12月 18 14:52 demo1.log
-rw-r--r-- 2 root root 40M 12月 18 14:52 demo2.log
-rw-r--r-- 2 root root 40M 12月 18 14:52 demo3.log
-rw-r--r-- 2 root root 40M 12月 18 14:52 demo4.log

[root@node2 ~]# ll -h /data/sde1
总用量 161M
-rw-r--r-- 2 root root 40M 12月 18 14:52 demo1.log
-rw-r--r-- 2 root root 40M 12月 18 14:52 demo2.log
-rw-r--r-- 2 root root 40M 12月 18 14:52 demo3.log
-rw-r--r-- 2 root root 40M 12月 18 14:52 demo4.log

[root@node3 ~]# ll -h /data/sde1
总用量 41M
-rw-r--r-- 2 root root 40M 12月 18 14:52 demo5.log
[root@node3 ~]# 

[root@node4 ~]# ll -h /data/sde1
总用量 41M
-rw-r--r-- 2 root root 40M 12月 18 14:52 demo5.log


3.6 破坏性测试

#挂起 node2 节点或者关闭glusterd服务来模拟故障
[root@node2 ~]# systemctl stop glusterd.service

#在客户端上查看文件是否正常
#分布式卷数据查看
[root@localhost test]# ll /test/dis/        #在客户机上发现少了demo5.log文件,这个是在node2上的
总用量 163840
-rw-r--r-- 1 root root 41943040 12月 18 14:50 demo1.log
-rw-r--r-- 1 root root 41943040 12月 18 14:50 demo2.log
-rw-r--r-- 1 root root 41943040 12月 18 14:50 demo3.log
-rw-r--r-- 1 root root 41943040 12月 18 14:50 demo4.log

#条带卷
[root@localhost test]# cd /test/stripe/        #无法访问,条带卷不具备冗余性
[root@localhost stripe]# ll
总用量 0

#分布式条带卷
[root@localhost test]# ll /test/dis_stripe/        #无法访问,分布条带卷不具备冗余性
总用量 40960
-rw-r--r-- 1 root root 41943040 12月 18 14:51 demo5.log

#分布式复制卷
[root@localhost test]# ll /test/dis_rep/    #可以访问,分布式复制卷具备冗余性
总用量 204800
-rw-r--r-- 1 root root 41943040 12月 18 14:52 demo1.log
-rw-r--r-- 1 root root 41943040 12月 18 14:52 demo2.log
-rw-r--r-- 1 root root 41943040 12月 18 14:52 demo3.log
-rw-r--r-- 1 root root 41943040 12月 18 14:52 demo4.log
-rw-r--r-- 1 root root 41943040 12月 18 14:52 demo5.log


#挂起 node2 和 node4 节点,在客户端上查看文件是否正常
#测试复制卷是否正常
[root@localhost rep]# ls -l /test/rep/        #在客户机上测试正常 数据有
总用量 204800
-rw-r--r-- 1 root root 41943040 12月 18 14:51 demo1.log
-rw-r--r-- 1 root root 41943040 12月 18 14:51 demo2.log
-rw-r--r-- 1 root root 41943040 12月 18 14:51 demo3.log
-rw-r--r-- 1 root root 41943040 12月 18 14:51 demo4.log
-rw-r--r-- 1 root root 41943040 12月 18 14:51 demo5.log

#测试分布式条卷是否正常
[root@localhost dis_stripe]# ll /test/dis_stripe/        #在客户机上测试没有数据 
总用量 0

#测试分布式复制卷是否正常
[root@localhost dis_rep]# ll /test/dis_rep/        #在客户机上测试正常 有数据
总用量 204800
-rw-r--r-- 1 root root 41943040 12月 18 14:52 demo1.log
-rw-r--r-- 1 root root 41943040 12月 18 14:52 demo2.log
-rw-r--r-- 1 root root 41943040 12月 18 14:52 demo3.log
-rw-r--r-- 1 root root 41943040 12月 18 14:52 demo4.log
-rw-r--r-- 1 root root 41943040 12月 18 14:52 demo5.log


##### 上述实验测试,凡是带复制数据,相比而言,数据比较安全 #####

3.7 扩展其他的维护命令

1.查看GlusterFS卷
gluster volume list 

2.查看所有卷的信息
gluster volume info

3.查看所有卷的状态
gluster volume status

4.停止一个卷
gluster volume stop dis-stripe

5.删除一个卷,注意:删除卷时,需要先停止卷,且信任池中不能有主机处于宕机状态,否则删除不成功
gluster volume delete dis-stripe

6.设置卷的访问控制
#仅拒绝
gluster volume set dis-rep auth.deny 192.168.80.100

#仅允许
gluster volume set dis-rep auth.allow 192.168.80.*      #设置192.168.80.0网段的所有IP地址都能访问dis-rep卷(分布式复制卷)


3.8 安装报错:版本过高,先解除依赖关系
yum remove glusterfs-api.x86_64 glusterfs-cli.x86_64 glusterfs.x86_64 glusterfs-libs.x86_64 glusterfs-client-xlators.x86_64 glusterfs-fuse.x86_64 -y

更多推荐

Java版本spring cloud + spring boot企业电子招投标系统源代码

项目说明随着公司的快速发展,企业人员和经营规模不断壮大,公司对内部招采管理的提升提出了更高的要求。在企业里建立一个公平、公开、公正的采购环境,最大限度控制采购成本至关重要。符合国家电子招投标法律法规及相关规范,以及审计监督要求;通过电子化平台提高招投标工作的公开性和透明性;通过电子化招投标,使得招标采购的质量更高、速度

RUST 每日一省:全局变量

Rust中允许存在全局变量。它们一般有两种:常数和静态值。常量我们使用关键字const来创建常量。由于常量未使用关键字let声明,因此在创建它们时必须指定类型。常量只能进行简单赋值,并且没有固定的内存地址,无论它们在何处使用都会被内联。常量不能遮蔽,不能重复定义。也就是说,不存在内层或后面作用域定义的常量去遮蔽外层或前

RocketMQ 源码分析——Producer

文章目录消息发送代码实现消息发送者启动流程检查配置获得MQ客户端实例启动实例定时任务Producer消息发送流程选择队列默认选择队列策略故障延迟机制策略*两种策略的选择技术亮点:ThreadLocal消息发送代码实现下面是一个生产者发送消息的demo(同步发送)主要做了几件事:初始化一个生产者(DefaultMQPro

四、线性支持向量机算法(LinearSVC,Linear Support Vector Classification)(有监督学习)

线性支持向量机,LinearSupportVectorClassification.与参数内核为线性的SVC类似(SVC(kernel=‘linear’)),但使用liblinear而非libsvm实现,因此在选择惩罚和损失函数时更具灵活性,并能更好地扩展到大量样本SVC(kernel=’linear’)和Linear

Meta | 对比解码:进一步提升LLM推理能力

深度学习自然语言处理原创作者:wkk为了改进LLM的推理能力,UniversityofCalifornia联合MetaAI实验室提出将ContrastiveDecoding应用于多种任务的LLM方法。实验表明,所提方法能有效改进LLM的推理能力。让我们走进论文一探究竟吧!论文:ContrastiveDecodingIm

《动手学深度学习 Pytorch版》 6.1 从全连接层到卷积

6.1.1不变性平移不变性(translationinvariance):不管检测对象出现在图像中的哪个位置,神经网络的前面几层应该对相同的图像区域具有相似的反应,即为“平移不变性”。局部性(locality):神经网络的前面几层应该只探索输入图像中的局部区域,而不过度在意图像中相隔较远区域的关系,这就是“局部性”原则

《动手学深度学习 Pytorch版》 7.1 深度卷积神经网络(LeNet)

7.1.1学习表征深度卷积神经网络的突破出现在2012年。突破可归因于以下两个关键因素:缺少的成分:数据数据集紧缺的情况在2010年前后兴起的大数据浪潮中得到改善。ImageNet挑战赛中,ImageNet数据集由斯坦福大学教授李飞飞小组的研究人员开发,利用谷歌图像搜索对分类图片进行预筛选,并利用亚马逊众包标注每张图片

QT基础教程(文本绘制)

文章目录前言一、普通文本绘制二、绘制旋转文本三、旋转文本升级总结前言本篇文章我们来讲解一下QT中使用QPainter来绘制文本的案例。一、普通文本绘制在Qt中,你可以使用QPainter类来绘制文本,包括普通文本、格式化文本和自定义文本效果。下面是使用QPainter绘制文本的基本方法和示例:1.绘制普通文本:使用QP

Shiro【核心功能、核心组件、项目搭建 、配置文件认证、数据库认证 】(一)-全面详解(学习总结---从入门到深化)

目录Shiro介绍_Shiro核心功能Shiro介绍_Shiro核心组件Shiro入门_项目搭建Shiro入门_配置文件认证Shiro入门_数据库认证Shiro认证_将Shiro对象交给容器管理Shiro介绍_Shiro简介Shiro是apache旗下的一个开源安全框架,它可以帮助我们完成身份认证,授权、加密、会话管理

解锁前端Vue3宝藏级资料 第五章 Vue 组件应用 5 (Vue 插件)

想了解Vue插件所以你看了官方文档却看不懂,或者你想知道Vue.use()方法和插件的关系。在本文档中,我们将参照文档讲解插件制作的基础知识,了解基础知识后,我们将制作与更实用的下拉菜单和脚本加载相关的插件。读完之后,您应该知道如何创建自己的插件以及如何添加插件。第一章Vue3项目创建1VueCLI创建vue项目第一章

Centos安装postgresql

一.执行安装命令与查看是否成功:1.yuminstall-ypostgresql-serverpostgresql-contrib2.安装后执行$psql--version或$psql-V可显示psql(PostgreSQL)9.2.243.另外,安装的同时还会创建postgres用户,Home为/var/lib/pg

热文推荐