《动手学深度学习 Pytorch版》 7.1 深度卷积神经网络(LeNet)

2023-09-18 08:27:56

7.1.1 学习表征

深度卷积神经网络的突破出现在2012年。突破可归因于以下两个关键因素:

  • 缺少的成分:数据
    数据集紧缺的情况在 2010 年前后兴起的大数据浪潮中得到改善。ImageNet 挑战赛中,ImageNet数据集由斯坦福大学教授李飞飞小组的研究人员开发,利用谷歌图像搜索对分类图片进行预筛选,并利用亚马逊众包标注每张图片的类别。这种数据规模是前所未有的。
  • 缺少的成分:硬件
    2012年,Alex Krizhevsky和Ilya Sutskever使用两个显存为3GB的NVIDIA GTX580 GPU实现了快速卷积运算,推动了深度学习热潮。

7.1.2 AlexNet

2012年横空出世的 AlexNet 首次证明了学习到的特征可以超越手动设计的特征。

AlexNet 和 LeNet 的架构非常相似(此书对模型稍微精简了一下,取出来需要两个小GPU同时运算的设计特点):

全连接层(1000)

↑ \uparrow

全连接层(4096)

↑ \uparrow

全连接层(4096)

↑ \uparrow

3 × 3 3\times3 3×3最大汇聚层,步幅2

↑ \uparrow

3 × 3 3\times3 3×3卷积层(384),填充1

↑ \uparrow

3 × 3 3\times3 3×3卷积层(384),填充1

↑ \uparrow

3 × 3 3\times3 3×3卷积层(384),填充1

↑ \uparrow

3 × 3 3\times3 3×3最大汇聚层,步幅2

↑ \uparrow

5 × 5 5\times5 5×5卷积层(256),填充2

↑ \uparrow

3 × 3 3\times3 3×3最大汇聚层,步幅2

↑ \uparrow

11 × 11 11\times11 11×11卷积层(96),步幅4

↑ \uparrow

输入图像( 3 × 224 × 224 3\times224\times224 3×224×224

AlexNet 和 LeNet 的差异:

- AlexNet 比 LeNet 深的多
- AlexNet 使用 ReLU 而非 sigmoid 作为激活函数

以下为 AlexNet 的细节。

  1. 模型设计

    由于 ImageNet 中的图像大多较大,因此第一层采用了 11 × 11 11\times11 11×11 的超大卷积核。后续再一步一步缩减到 3 × 3 3\times3 3×3。而且 AlexNet 的卷积通道数是 LeNet 的十倍。

    最后两个巨大的全连接层分别各有4096个输出,近 1G 的模型参数。因早期 GPU 显存有限,原始的 AlexNet 采取了双数据流设计。

  2. 激活函数

    ReLU 激活函数是训练模型更加容易。它在正区间的梯度总为1,而 sigmoid 函数可能在正区间内得到几乎为 0 的梯度。

  3. 容量控制和预处理

    AlexNet 通过暂退法控制全连接层的复杂度。此外,为了扩充数据,AlexNet 在训练时增加了大量的图像增强数据(如翻转、裁切和变色),这也使得模型更健壮,并减少了过拟合。

import torch
from torch import nn
from d2l import torch as d2l
net = nn.Sequential(
    # 这里使用一个11*11的更大窗口来捕捉对象。
    # 同时,步幅为4,以减少输出的高度和宽度。
    # 另外,输出通道的数目远大于LeNet
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
    nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 使用三个连续的卷积层和较小的卷积窗口。
    # 除了最后的卷积层,输出通道的数量进一步增加。
    # 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度
    nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Flatten(),
    # 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合
    nn.Linear(6400, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    nn.Linear(4096, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    # 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
    nn.Linear(4096, 10))
X = torch.randn(1, 1, 224, 224)
for layer in net:
    X=layer(X)
    print(layer.__class__.__name__,'output shape:\t',X.shape)
Conv2d output shape:	 torch.Size([1, 96, 54, 54])
ReLU output shape:	 torch.Size([1, 96, 54, 54])
MaxPool2d output shape:	 torch.Size([1, 96, 26, 26])
Conv2d output shape:	 torch.Size([1, 256, 26, 26])
ReLU output shape:	 torch.Size([1, 256, 26, 26])
MaxPool2d output shape:	 torch.Size([1, 256, 12, 12])
Conv2d output shape:	 torch.Size([1, 384, 12, 12])
ReLU output shape:	 torch.Size([1, 384, 12, 12])
Conv2d output shape:	 torch.Size([1, 384, 12, 12])
ReLU output shape:	 torch.Size([1, 384, 12, 12])
Conv2d output shape:	 torch.Size([1, 256, 12, 12])
ReLU output shape:	 torch.Size([1, 256, 12, 12])
MaxPool2d output shape:	 torch.Size([1, 256, 5, 5])
Flatten output shape:	 torch.Size([1, 6400])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 10])

7.1.3 读取数据集

如果真用 ImageNet 训练,即使是现在的 GPU 也需要数小时或数天的时间。在此仅作演示,仍使用 Fashion-MNIST 数据集,故在此需要解决图像分辨率的问题。

batch_size = 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)

7.1.4 训练 AlexNet

lr, num_epochs = 0.01, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())  # 大约需要二十分钟,慎跑
loss 0.330, train acc 0.879, test acc 0.878
592.4 examples/sec on cuda:0

在这里插入图片描述

练习

(1)尝试增加轮数。对比 LeNet 的结果有什么不同?为什么?

lr, num_epochs = 0.01, 15
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())  # 大约需要三十分钟,慎跑
loss 0.284, train acc 0.896, test acc 0.887
589.3 examples/sec on cuda:0

在这里插入图片描述

相较于 LeNet 的增加轮次反而导致精度下降,AlexNet 具有更好的抗过拟合能力,增加轮次精度就会上升。


(2) AlexNet 模型对 Fashion-MNIST 可能太复杂了。

a. 尝试简化模型以加快训练速度,同时确保准确性不会显著下降。

b. 设计一个更好的模型,可以直接在 $28\times28$ 像素的图像上工作。
net_Better = nn.Sequential(
    nn.Conv2d(1, 64, kernel_size=5, stride=2, padding=2), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=1),
    nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(128, 64, kernel_size=3, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Flatten(),
    nn.Linear(64 * 5 * 5, 1024), nn.ReLU(),
    nn.Dropout(p=0.3), 
    nn.Linear(1024, 512), nn.ReLU(),
    nn.Dropout(p=0.3),
    nn.Linear(512, 10)
)

X = torch.randn(1, 1, 28, 28)
for layer in net_Better:
    X=layer(X)
    print(layer.__class__.__name__,'output shape:\t',X.shape)
Conv2d output shape:	 torch.Size([1, 64, 14, 14])
ReLU output shape:	 torch.Size([1, 64, 14, 14])
MaxPool2d output shape:	 torch.Size([1, 64, 12, 12])
Conv2d output shape:	 torch.Size([1, 128, 12, 12])
ReLU output shape:	 torch.Size([1, 128, 12, 12])
Conv2d output shape:	 torch.Size([1, 128, 12, 12])
ReLU output shape:	 torch.Size([1, 128, 12, 12])
Conv2d output shape:	 torch.Size([1, 64, 12, 12])
ReLU output shape:	 torch.Size([1, 64, 12, 12])
MaxPool2d output shape:	 torch.Size([1, 64, 5, 5])
Flatten output shape:	 torch.Size([1, 1600])
Linear output shape:	 torch.Size([1, 1024])
ReLU output shape:	 torch.Size([1, 1024])
Dropout output shape:	 torch.Size([1, 1024])
Linear output shape:	 torch.Size([1, 512])
ReLU output shape:	 torch.Size([1, 512])
Dropout output shape:	 torch.Size([1, 512])
Linear output shape:	 torch.Size([1, 10])
batch_size = 128
train_iter28, test_iter28 = d2l.load_data_fashion_mnist(batch_size=batch_size)
lr, num_epochs = 0.01, 10
d2l.train_ch6(net_Better, train_iter28, test_iter28, num_epochs, lr, d2l.try_gpu())  # 快多了
loss 0.429, train acc 0.841, test acc 0.843
6650.9 examples/sec on cuda:0

在这里插入图片描述


(3)修改批量大小,并观察模型精度和GPU显存变化。

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)

lr, num_epochs = 0.01, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())  # 大约需要二十分钟,慎跑
loss 0.407, train acc 0.850, test acc 0.855
587.8 examples/sec on cuda:0

在这里插入图片描述

4G 显存基本拉满,精度略微下降,过拟合貌似严重了。


(4)分析 AlexNet 的计算性能。

a. 在 AlexNet 中主要是哪一部分占用显存?

b. 在AlexNet中主要是哪部分需要更多的计算?

c. 计算结果时显存带宽如何?

a. 第一个全连接层占用显存最多

b. 倒数第二个卷积层需要更多的计算


(5)将dropout和ReLU应用于LeNet-5,效果有提升吗?再试试预处理会怎么样?

net_try = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.ReLU(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.ReLU(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.ReLU(),
    nn.Dropout(p=0.2), 
    nn.Linear(120, 84), nn.ReLU(),
    nn.Dropout(p=0.2), 
    nn.Linear(84, 10))

lr, num_epochs = 0.6, 10
d2l.train_ch6(net_try, train_iter28, test_iter28, num_epochs, lr, d2l.try_gpu())  # 浅调一下还挺好
loss 0.306, train acc 0.887, test acc 0.883
26121.2 examples/sec on cuda:0

在这里插入图片描述

浅浅调一下,效果挺好,精度有所提升。

更多推荐

ChatGPT Prompting开发实战(八)

一.什么是归纳总结式的prompt开发有时候需要对一段文本进行归纳总结,那么可以采取以下的方案:-按照给定单词、句子或者字符的数量限制来让模型裁剪文本,使内容更精炼-基于聚焦的主题进行总结-只根据需求抽取相关的文本信息,不需要整段文本内容除了上面列出的几种方式之外,还可能有额外的一些需求,譬如给出多段文本,要求模型同时

JUnit测试进阶(Private测试)

Private测试前言一、间接调用二、Java反射机制调用前言在单元测试中,由于私有方法(PrivateMethod)无法直接被调用,因此对私有方法进行测试成为一项难题。一个可行的方法是:在测试时将私有方法改变为公有方法(PublicMethod),在测试完成后再将其修改为私有方法。然而,该方法操作过程比较复杂,不利于

Redis面试题(五)

文章目录前言一、使用过Redis做异步队列么,你是怎么用的?有什么缺点?二、什么是缓存穿透?如何避免?什么是缓存雪崩?何如避免?总结前言使用过Redis做异步队列么,你是怎么用的?有什么缺点?什么是缓存穿透?如何避免?什么是缓存雪崩?何如避免?`一、使用过Redis做异步队列么,你是怎么用的?有什么缺点?一般使用lis

Windows开机密码破解

目前可行的方法(目前只能通过进PE的方式进行密码的修改)通过本文最后“本文参考网页”下载Rufus写盘工具和Hiren’sBootCDPE镜像启动写盘工具,选择U盘和镜像U盘插入电脑时确保电脑为关机状态启动电脑,快速敲击Delete键,进入Bios界面(不同的电脑是通过不同的按键进入BIOS,可以利用搜索引擎查看你的电

腾讯会议核心存储治理:Redis分库和异地多活

👉导读会控为整个会议最为核心的业务,由于海量请求的高性能要求,后台存储全部为Redis。在业务飞速发展期,各模块边界不够清晰,大家对存储的使用处于失控状态,随着PCU的不断上涨,逐步暴露出存储和架构的诸多问题,同时也对系统容灾能力有了更高的要求。会控业务历史包袱重,存储改造伤筋动骨,要做到平滑迁移需要考虑的细节较多。

常用注解梳理

@RestController注解:将一个类标识为一个RESTful风格的控制器,用于处理HTTP请求和响应。@RequestMapping注解:用于将一个HTTP请求映射到控制器的处理方法上,可以用于类级别和方法级别。@PostMapping注解:用于将HTTPPOST请求映射到控制器的处理方法上。@GetMappi

浅谈xss

XSS简介XSS,全称CrossSiteScripting,即跨站脚本攻击,是最普遍的Web应用安全漏洞。这类漏洞能够使得攻击者嵌入恶意脚本代码到正常用户会访问到的页面中,当正常用户访问该页面时,则可导致嵌入的恶意脚本代码的执行,从而达到恶意攻击用户的目的。需要强调的是,XSS不仅仅限于JavaScript,还包括fl

vue模板语法(下集)

事件处理器Vue模板语法中的事件处理器是指在Vue组件中绑定DOM事件,当事件发生时执行相应的方法或表达式。常见的事件包括点击事件@click、输入事件@input、鼠标移入事件@mouseover等等。事件监听可以使用v-on指令2.1事件修饰符.Vue通过由点(.)表示的指令后缀来调用修饰符,.stop.preve

华为OD机试 - 矩形相交的面积 - 逻辑分析(Java 2023 B卷 100分)

目录专栏导读一、题目描述二、输入描述三、输出描述1、输入:2、输出:3、说明四、解题思路五、Java算法源码六、效果展示1、输入2、输出3、说明华为OD机试2023B卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试(JAVA)真题(A卷+B卷)》。刷的越多,抽中的概率越大,每一题都有详细的答题思路、详细的

高并发压力测试,你真的会做吗?

一、Introduction对于小微企业网站在自主推出某些活动时,可能导致网站产生高并发访问的情况。针对这种情况采用临时租用云服务器是有性价比的应对措施,比如,使用弹性云。这种租用服务有的按照访问流量计费。为了计算出大概的预算,需要根据推算的访问量做并发压力测试。二、压力测试方法一般,使用apache自带的ab.exe

【Java】泛型

简单泛型促成泛型出现的最主要的动机之一是为了创建集合类,我们先看一个只能持有单个对象的类。这个类可以明确指定其持有的对象的类型://generics/Holder1.javaclassAutomobile{}publicclassHolder1{privateAutomobilea;publicHolder1(Auto

热文推荐