微服务保护

2023-09-21 10:54:51

1.初识Sentinel

1.1.雪崩问题及解决方案

1.雪崩问题

微服务中,服务间调用关系错综复杂,一个微服务往往依赖于多个其它微服务。

如图,如果服务提供者I发生了故障,当前的应用的部分业务因为依赖于服务I,因此也会被阻塞。此时,其它不依赖于服务I的业务似乎不受影响。

但是,依赖服务I的业务请求被阻塞,用户不会得到响应,则tomcat的这个线程不会释放,于是越来越多的用户请求到来,越来越多的线程会阻塞:

服务器支持的线程和并发数有限,请求一直阻塞,会导致服务器资源耗尽,从而导致所有其它服务都不可用,那么当前服务也就不可用了。

那么,依赖于当前服务的其它服务随着时间的推移,最终也都会变的不可用,形成级联失败,雪崩就发生了:

2.超时处理

解决雪崩问题的常见方式有四种:

超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待

3.仓壁模式

方案2:仓壁模式

仓壁模式来源于船舱的设计:

船舱都会被隔板分离为多个独立空间,当船体破损时,只会导致部分空间进入,将故障控制在一定范围内,避免整个船体都被淹没。与此类似,我们可以限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离。

4.断路器

断路器模式:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。

断路器会统计访问某个服务的请求数量,异常比例:

当发现访问服务D的请求异常比例过高时,认为服务D有导致雪崩的风险,会拦截访问服务D的一切请求,形成熔断:

5.限流

流量控制:限制业务访问的QPS,避免服务因流量的突增而故障。

1.2.服务保护技术对比

在SpringCloud当中支持多种服务保护技术:

早期比较流行的是Hystrix框架,但目前国内实用最广泛的还是阿里巴巴的Sentinel框架,这里我们做下对比:

SentinelHystrix
隔离策略信号量隔离线程池隔离/信号量隔离
熔断降级策略基于慢调用比例或异常比例基于失败比率
实时指标实现滑动窗口滑动窗口(基于 RxJava)
规则配置支持多种数据源支持多种数据源
扩展性多个扩展点插件的形式
基于注解的支持支持支持
限流基于 QPS,支持基于调用关系的限流有限的支持
流量整形支持慢启动、匀速排队模式不支持
系统自适应保护支持不支持
控制台开箱即用,可配置规则、查看秒级监控、机器发现等不完善
常见框架的适配Servlet、Spring Cloud、Dubbo、gRPC 等Servlet、Spring Cloud Netflix

1.3.Sentinel介绍和安装

1.初识Sentinel

Sentinel是阿里巴巴开源的一款微服务流量控制组件。官网地址:home | Sentinel

Sentinel 具有以下特征:

丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。

完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。

广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。

完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。

2.安装Sentinel

1)下载

sentinel官方提供了UI控制台,方便我们对系统做限流设置。大家可以在GitHub下载。

课前资料也提供了下载好的jar包:

2)运行

将jar包放到任意非中文目录,执行命令:

java -jar sentinel-dashboard-1.8.1.jar

如果要修改Sentinel的默认端口、账户、密码,可以通过下列配置:

配置项默认值说明
server.port8080服务端口
sentinel.dashboard.auth.usernamesentinel默认用户名
sentinel.dashboard.auth.passwordsentinel默认密码

例如,修改端口:

java -Dserver.port=8090 -jar sentinel-dashboard-1.8.1.jar

3)访问

访问http://localhost:8080页面,就可以看到sentinel的控制台了:

需要输入账号和密码,默认都是:sentinel,登录后,发现一片空白,什么都没有:

这是因为我们还没有与微服务整合。

1.4.微服务整合Sentinel

我们在order-service中整合sentinel,并连接sentinel的控制台,步骤如下:

1)引入sentinel依赖

<!--sentinel-->
<dependency>
    <groupId>com.alibaba.cloud</groupId> 
    <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

2)配置控制台

修改application.yaml文件,添加下面内容:

server:
  port: 8088
spring:
  cloud: 
    sentinel:
      transport:
        dashboard: localhost:8080

3)访问order-service的任意端点

打开浏览器,访问http://localhost:8088/order/101,这样才能触发sentinel的监控。

然后再访问sentinel的控制台,查看效果:

2.流量控制

雪崩问题虽然有四种方案,但是限流是避免服务因突发的流量而发生故障,是对微服务雪崩问题的预防。我们先学习这种模式。

2.1.簇点链路

当请求进入微服务时,首先会访问DispatcherServlet,然后进入Controller、Service、Mapper,这样的一个调用链就叫做簇点链路。簇点链路中被监控的每一个接口就是一个资源

默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint,也就是controller中的方法),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。

例如,我们刚才访问的order-service中的OrderController中的端点:/order/{orderId}

流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:

  • 流控:流量控制

  • 降级:降级熔断

  • 热点:热点参数限流,是限流的一种

  • 授权:请求的权限控制

2.2.快速入门

点击资源/order/{orderId}后面的流控按钮,就可以弹出表单。

表单中可以填写限流规则,如下:

其含义是限制 /order/{orderId}这个资源的单机QPS为1,即每秒只允许1次请求,超出的请求会被拦截并报错。

2.3.流控模式

在添加限流规则时,点击高级选项,可以选择三种流控模式

  • 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式

  • 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流

  • 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流

快速入门测试的就是直接模式。

2.2.1.关联模式

关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流

配置规则

语法说明:当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源。

使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。

需求说明

  • 在OrderController新建两个端点:/order/query和/order/update,无需实现业务

  • 配置流控规则,当/order/ update资源被访问的QPS超过5时,对/order/query请求限流

1)定义/order/query端点,模拟订单查询

@GetMapping("/query")
public String queryOrder() {
    return "查询订单成功";
}

2)定义/order/update端点,模拟订单更新

@GetMapping("/update")
public String updateOrder() {
    return "更新订单成功";
}

重启服务,查看sentinel控制台的簇点链路:

3)配置流控规则

对哪个端点限流,就点击哪个端点后面的按钮。我们是对订单查询/order/query限流,因此点击它后面的按钮:

在表单中填写流控规则:

4)在Jmeter测试

如果没有用过jmeter,可以参考课前资料提供的文档《Jmeter快速入门.md》

课前资料提供了编写好的Jmeter测试样例:

打开jmeter,导入课前资料提供的测试样例:

选择《流控模式-关联》:

可以看到1000个用户,100秒,因此QPS为10,超过了我们设定的阈值:5

查看http请求:

请求的目标是/order/update,这样这个断点就会触发阈值。但限流的目标是/order/query,我们在浏览器访问,可以发现:

确实被限流了。

5)关联模式适用场景

2.2.2.链路模式

链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。

配置示例

例如有两条请求链路:

  • /test1 --> /common

  • /test2 --> /common

如果只希望统计从/test2进入到/common的请求,则可以这样配置:

实战案例

需求:有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。

步骤:

  1. 在OrderService中添加一个queryGoods方法,不用实现业务

  2. 在OrderController中,改造/order/query端点,调用OrderService中的queryGoods方法

  3. 在OrderController中添加一个/order/save的端点,调用OrderService的queryGoods方法

  4. 给queryGoods设置限流规则,从/order/query进入queryGoods的方法限制QPS必须小于2

实现:

1)添加查询商品方法

在order-service服务中,给OrderService类添加一个queryGoods方法:

public void queryGoods(){
    System.err.println("查询商品");
}

2)查询订单时,查询商品

在order-service的OrderController中,修改/order/query端点的业务逻辑:

@GetMapping("/query")
public String queryOrder() {
    // 查询商品
    orderService.queryGoods();
    // 查询订单
    System.out.println("查询订单");
    return "查询订单成功";
}

3)新增订单,查询商品

在order-service的OrderController中,修改/order/save端点,模拟新增订单:

@GetMapping("/save")
public String saveOrder() {
    // 查询商品
    orderService.queryGoods();
    // 查询订单
    System.err.println("新增订单");
    return "新增订单成功";
}

4)给查询商品添加资源标记

默认情况下,OrderService中的方法是不被Sentinel监控的,需要我们自己通过注解来标记要监控的方法。

给OrderService的queryGoods方法添加@SentinelResource注解:

@SentinelResource("goods")
public void queryGoods(){
    System.err.println("查询商品");
}

链路模式中,是对不同来源的两个链路做监控。但是sentinel默认会给进入SpringMVC的所有请求设置同一个root资源,会导致链路模式失效。

我们需要关闭这种对SpringMVC的资源聚合,修改order-service服务的application.yml文件:

spring:
  cloud:
    sentinel:
      web-context-unify: false # 关闭context整合

重启服务,访问/order/query和/order/save,可以查看到sentinel的簇点链路规则中,出现了新的资源:

5)添加流控规则

点击goods资源后面的流控按钮,在弹出的表单中填写下面信息:

只统计从/order/query进入/goods的资源,QPS阈值为2,超出则被限流。

6)Jmeter测试

选择《流控模式-链路》:

可以看到这里200个用户,50秒内发完,QPS为4,超过了我们设定的阈值2

一个http请求是访问/order/save:

运行的结果:

完全不受影响。

另一个是访问/order/query:

运行结果:

每次只有2个通过。

2.3.流控效果

在流控的高级选项中,还有一个流控效果选项:

流控效果是指请求达到流控阈值时应该采取的措施,包括三种:

  • 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。

  • warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。

  • 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长

2.3.1.warm up

阈值一般是一个微服务能承担的最大QPS,但是一个服务刚刚启动时,一切资源尚未初始化(冷启动),如果直接将QPS跑到最大值,可能导致服务瞬间宕机。warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 maxThreshold / coldFactor,持续指定时长后,逐渐提高到maxThreshold值。而coldFactor的默认值是3.例如,我设置QPS的maxThreshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用warm up效果,预热时长为5秒

1)配置流控规则:

2)Jmeter测试

选择《流控效果,warm up》:

QPS为10.

刚刚启动时,大部分请求失败,成功的只有3个,说明QPS被限定在3:

随着时间推移,成功比例越来越高:

到Sentinel控制台查看实时监控:

一段时间后:

2.3.2.排队等待

当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常。

而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。

工作原理

例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待时长超过2000ms的请求会被拒绝并抛出异常。

那什么叫做预期等待时长呢?

比如现在一下子来了12 个请求,因为每200ms执行一个请求,那么:

  • 第6个请求的预期等待时长 = 200 * (6 - 1) = 1000ms

  • 第12个请求的预期等待时长 = 200 * (12-1) = 2200ms

现在,第1秒同时接收到10个请求,但第2秒只有1个请求,此时QPS的曲线这样的:

如果使用队列模式做流控,所有进入的请求都要排队,以固定的200ms的间隔执行,QPS会变的很平滑:

平滑的QPS曲线,对于服务器来说是更友好的。

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用排队的流控效果,超时时长设置为5s

1)添加流控规则

2)Jmeter测试

选择《流控效果,队列》:

QPS为15,已经超过了我们设定的10。

如果是之前的 快速失败、warmup模式,超出的请求应该会直接报错。

但是我们看看队列模式的运行结果:

全部都通过了。

再去sentinel查看实时监控的QPS曲线:

QPS非常平滑,一致保持在10,但是超出的请求没有被拒绝,而是放入队列。因此响应时间(等待时间)会越来越长。

当队列满了以后,才会有部分请求失败:

2.4.热点参数限流

之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值。

2.4.1.全局参数限流

例如,一个根据id查询商品的接口:

访问/goods/{id}的请求中,id参数值会有变化,热点参数限流会根据参数值分别统计QPS,统计结果:

当id=1的请求触发阈值被限流时,id值不为1的请求不受影响。

配置示例:

代表的含义是:对hot这个资源的0号参数(第一个参数)做统计,每1秒相同参数值的请求数不能超过5。

2.4.2.热点参数限流

刚才的配置中,对查询商品这个接口的所有商品一视同仁,QPS都限定为5.

而在实际开发中,可能部分商品是热点商品,例如秒杀商品,我们希望这部分商品的QPS限制与其它商品不一样,高一些。那就需要配置热点参数限流的高级选项了:

结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:

  • 如果参数值是100,则每1秒允许的QPS为10
  • 如果参数值是101,则每1秒允许的QPS为15

2.4.4.案例

案例需求:给/order/{orderId}这个资源添加热点参数限流,规则如下:

•默认的热点参数规则是每1秒请求量不超过2

•给102这个参数设置例外:每1秒请求量不超过4

•给103这个参数设置例外:每1秒请求量不超过10

注意事项:热点参数限流对默认的SpringMVC资源无效,需要利用@SentinelResource注解标记资源

1)标记资源

给order-service中的OrderController中的/order/{orderId}资源添加注解:

2)热点参数限流规则

访问该接口,可以看到我们标记的hot资源出现了:

这里不要点击 hot 后面的按钮,页面有BUG

点击左侧菜单中热点规则菜单:

点击新增,填写表单:

3)Jmeter测试

选择《热点参数限流 QPS1》:

这里发起请求的QPS为5.

包含3个http请求:

普通参数,QPS阈值为2

运行结果:

例外项,QPS阈值为4

运行结果:

例外项,QPS阈值为10

运行结果:

更多推荐

【实训项目】智联校友会小程序

1.项目背景作为某某省唯一一所中医药高等院校,××大学已经走过了30个春秋,截止到现在,我校已有近十万名校友遍布全国各地,校友在社会各界享有良好声誉,校友与学校相互成为密不可分的无形资源。然而,在广大在校学生中,还有很多校友意识薄弱,对和自己息息相关的校友工作并不了解。校友会管理系统是代表学校联系和服务校友的职能系统,

半导体产品使用高温老化测试技术

主要功能:为了达到满意的合格率,几乎所有产品在出厂前都必须经过老化处理。制造商如何在不缩短老化时间的情况下提高效率?本文介绍了一种在老化过程中进行功能测试的新方法,以减少和缩短与老化过程相关的成本和时间问题。在半导体行业,关于器件老化存在着各种争论。与其他产品一样,半导体随时可能因各种原因而失效。老化是通过使半导体超载

spring ioc

1.什么是SpringSpring框架是一个分层的、面向切面的Java应用程序的一站式轻量级解决方案,它是Spring技术栈的核心和基础,是为了解决企业级应用开发的复杂性而创建的。>简单来说,Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架。介于SpringMVC与Mybatis之间的中间层框

【java】【SpringBoot】【四】原理篇 bean、starter、核心原理

目录一、自动配置1、bean加载方式(复习)1.1加载方式-xml方式生命bean1.2加载方式-xml+注解方式声明bean1.3注解方式声明配置类1.4FactoryBean1.5proxyBeanMethod属性1.6使用@Import注解导入1.7使用上下文对象在容器初始化完毕后注入bean1.8导入实现了Im

Django Web开发入门基础

官方有很详细的文档,但是看过几遍之后如果要翻找还是有点麻烦,本文算作是学习笔记,提取一些关键点记录下来,另附上官方教程WritingyourfirstDjangoapp注:文中的指令使用py,是在Windows上,macOS要使用python31.安装DjangoDjango是一个基于Python的Web开发框架,安装

git使用说明

配置hosts配置C:\Windows\System32\drivers\etc\hosts192.168.**.**git.wl.com本地git账号配置(xxx在gitlab个人profile中)打开gitbashgitconfig--globaluser.namexxxxgitconfig--globaluser

使用springcloud-seata解决分布式事务问题-2PC模式

目录一、建立undo_log表二、安装事务协调器:seata-server三、整合可以查看官网:快速启动|Seata一、建立undo_log表--注意此处0.3.0+增加唯一索引ux_undo_logCREATETABLE`undo_log`(`id`bigint(20)NOTNULLAUTO_INCREMENT,`b

华为OD机试 - 滑动窗口最大和 - 滑动窗口(Java 2023 B卷 100分)

目录专栏导读一、题目描述二、输入描述三、输出描述四、解题思路五、Java算法源码六、效果展示1、输入2、输出3、说明华为OD机试2023B卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试(JAVA)真题(A卷+B卷)》。刷的越多,抽中的概率越大,每一题都有详细的答题思路、详细的代码注释、样例测试,发现新题

【技术分享】NetLogon于域内提权漏洞(CVE-2020-1472)

一、漏洞介绍CVE-2020-1472是一个Windows域控中严重的远程权限提升漏洞。攻击者在通过NetLogon(MS-NRPC)协议与AD域控建立安全通道时,可利用该漏洞将AD域控的计算机账号密码置为空,从而控制域控服务器。该漏洞适用于Win2008及后的所有版本。二、漏洞原理Netlogon使用的AES认证算法

区块链(3):区块链去中心化

1点对点同步区块链的流程流程图如下:流程讲解:(1)连接节点(2)向该节点请求最新区块(3)请求到区块以后,根据返回的最新区块前置hash是否和我本身的区块hash相等,分为两种情况:第一种情况:最新区块前置hash和我本身的区块hash相等并合法有效,则最新区块是新区块,同时添加到我的链中。然后广播到我这个节点连接的

期权交易保证金比例一般是多少?

期权交易是一种非常受欢迎的投资方式之一,它为期权市场带来了更为多样化和灵活化的交易形式。而其中的期权卖方保证金比例是期权交易中的一个重要指标,直接关系到投资者的风险与收益,下文介绍期权交易保证金比例一般是多少?本文来自:期权酱一、期权的交易保证金如何计算?期权交易保证金分为开仓保证金和维持保证金。采用非线性保证金的方式

热文推荐