机器学习实战:Python基于LASSO回归进行正则化(十二)

2023-07-14 09:10:43

1 前言

1.1 LASSO的介绍

LASSOLeast Absolute Shrinkage and Selection Operator)是一种用于线性回归和特征选择的正则化方法。它的基本原理是在损失函数中引入L1正则化项,通过最小化数据拟合误差和正则化项的和来实现模型参数的稀疏化和特征选择。

这种正则化项以模型参数的绝对值之和乘以一个调节参数alpha的形式出现,促使模型选择少量重要的特征,并将其他特征的系数缩减为零。通过调节alpha的值,我们可以控制模型的复杂度和特征选择的程度。LASSO的优势在于它能够自动进行特征选择,并产生更简洁和解释性强的模型。

优点:

  • 特征选择:LASSO回归通过L1正则化项,倾向于将某些回归系数估计为零,从而实现特征选择的效果。它可以帮助自动识别对目标变量具有显著影响的特征,从而简化模型并提高可解释性。
  • 处理共线性:LASSO回归在存在共线性(自变量之间高度相关)的情况下,可以有效减小回归系数的大小,并将某些相关变量的系数估计为零。这有助于解决多重共线性问题,提高模型的稳定性和泛化能力。
  • 可解释性:由于LASSO回归具有稀疏性,它仅选择了与目标变量相关的特征,使得模型的结果更易解释和理解。

缺点:

  • 参数选择:LASSO回归的性能高度依赖正则化参数λ的选择。选择合适的λ值并不容易,需要进行交叉验证或其他优化方法来确定最佳的正则化参数,这增加了使用LASSO回归的复杂性。
  • 不稳定性:在自变量之间存在高度相关性的情况下,LASSO回归可能对于数据中微小的变化非常敏感,导致系数估计的不稳定性。这意味着对于不同的训练集,可能会得到不同的结果。
  • 随机性:当多个特征高度相关时,LASSO回归倾向于随机选择其中之一,并将其他特征的系数估计为零。这意味着在拟合过程中,具有相似性的特征可能会被选择或排除,具有一定的随机性。

1.2 LASSO的应用

  1. 特征选择:
    在大数据集和探索性数据分析中,LASSO回归非常有用。它可以帮助从大量的特征中鉴别出对目标变量具有重要影响的特征,从而简化分析过程并提高预测模型的可解释性。

  2. 经济学和金融学:
    LASSO回归在经济学和金融学中被广泛应用。它可用于识别对经济或金融指标具有显著影响的因素。例如,可以利用LASSO回归来预测房价、股价或其他经济变量。

  3. 生物信息学和基因表达分析:
    LASSO回归在生物信息学和基因表达分析中扮演重要角色。它可以用于基因选择,帮助确定与生物过程、疾病或其他生物特征相关的基因。

  4. 医学研究:
    LASSO回归可应用于医学研究的数据分析中。例如,可以使用LASSO回归来预测疾病风险、识别生物标志物或预测治疗结果等。

  5. 图像处理和计算机视觉:
    LASSO回归在图像处理和计算机视觉领域中发挥作用。它可用于特征提取和图像恢复问题。通过LASSO回归,我们能够提取图像中的重要特征,并减少图像处理过程中的噪声和冗余。

  6. 自然语言处理:
    LASSO回归也被广泛应用于自然语言处理领域。例如,可以使用LASSO回归来进行文本分类、情感分析和关键词提取等任务。

2. diabetes数据集实战演示

这里介绍两种模型思路:AIC/BIC模型交叉验证模型

  • **AIC(Akaike Information Criterion)**和 **BIC(Bayesian Information Criterion)**是用于模型选择的准则。它们考虑了模型对数据的拟合程度和模型的复杂度,以平衡这两个因素。
    AIC 和 BIC 都是基于信息论的概念,通过对模型的对数似然函数值和模型参数数量的加权组合来衡量模型的质量。较小的 AIC 或 BIC 值表示模型对数据的拟合更好且模型较简单。
    使用 AIC 或 BIC 拟合模型时,可以根据准则的值选择最佳的模型。在模型选择过程中,通常会计算不同模型的 AIC 或 BIC 值,并选择具有最小值的模型。

  • 交叉验证是一种评估模型性能的技术,用于估计模型在未知数据上的泛化能力。
    在交叉验证中,数据集被分成多个子集(通常称为),其中一部分用于模型的训练,剩余的部分用于模型的验证。这个过程会多次重复,每次使用不同的子集进行训练和验证,以得到对模型性能的更稳定估计。
    交叉验证可以帮助评估模型在未知数据上的表现,并选择最合适的模型。常见的交叉验证方法包括 k 折交叉验证留一交叉验证

2.1 导入函数

import time
import numpy as np
import pandas as pd
from sklearn.linear_model import LassoLarsIC
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

没下载numpypandas的同学在终端下载

pip install numpy
pip install pandas

2.2 导入数据

from sklearn.datasets import load_diabetes
X, y = load_diabetes(return_X_y=True, as_frame=True)
X.head()

创建随机特征变量以模拟筛选

rng = np.random.RandomState(42)
n_random_features = 14
X_random = pd.DataFrame(
    rng.randn(X.shape[0], n_random_features),
    columns=[f"random_{i:02d}" for i in range(n_random_features)],
)
X = pd.concat([X, X_random], axis=1)
X[X.columns[::3]].head()

2.3 拟合模型(AIC/BIC)

使用 LassoLarsIC 来拟合 Lasso 模型,并选择具有最小 AIC 值的模型

start_time = time.time()
lasso_lars_ic = make_pipeline(StandardScaler(), LassoLarsIC(criterion="aic")).fit(X, y)
fit_time = time.time() - start_time

# 保存AIC
results = pd.DataFrame(
    {
        "alphas": lasso_lars_ic[-1].alphas_,
        "AIC criterion": lasso_lars_ic[-1].criterion_,
    }
).set_index("alphas")
alpha_aic = lasso_lars_ic[-1].alpha_

以同样标准提取 BIC

lasso_lars_ic.set_params(lassolarsic__criterion="bic").fit(X, y)
results["BIC criterion"] = lasso_lars_ic[-1].criterion_
alpha_bic = lasso_lars_ic[-1].alpha_

整合列表

def highlight_min(x):
    x_min = x.min()
    return ["font-weight: bold" if v == x_min else "" for v in x]


results.style.apply(highlight_min)

2.4 AIC/BIC可视化

ax = results.plot()
ax.vlines(
    alpha_aic,
    results["AIC criterion"].min(),
    results["AIC criterion"].max(),
    label="alpha: AIC estimate",
    linestyles="--",
    color="tab:blue",
)
ax.vlines(
    alpha_bic,
    results["BIC criterion"].min(),
    results["BIC criterion"].max(),
    label="alpha: BIC estimate",
    linestyle="--",
    color="tab:orange",
)
ax.set_xlabel(r"$\alpha$")
ax.set_ylabel("criterion")
ax.set_xscale("log")
ax.legend()
_ = ax.set_title(
    f"Information-criterion for model selection (training time {fit_time:.2f}s)"
)

2.5 拟合交叉验证模型及可视化

from sklearn.linear_model import LassoCV

start_time = time.time()
model = make_pipeline(StandardScaler(), LassoCV(cv=20)).fit(X, y)
fit_time = time.time() - start_time

import matplotlib.pyplot as plt

ymin, ymax = 2300, 3800
lasso = model[-1]
plt.semilogx(lasso.alphas_, lasso.mse_path_, linestyle=":")
plt.plot(
    lasso.alphas_,
    lasso.mse_path_.mean(axis=-1),
    color="black",
    label="Average across the folds",
    linewidth=2,
)
plt.axvline(lasso.alpha_, linestyle="--", color="black", label="alpha: CV estimate")

plt.ylim(ymin, ymax)
plt.xlabel(r"$\alpha$")
plt.ylabel("Mean square error")
plt.legend()
_ = plt.title(
    f"Mean square error on each fold: coordinate descent (train time: {fit_time:.2f}s)"
)

3. Hitters数据集实战演示

该数据框架包含 20 个变量和 322 个大联盟球员的观察结果,根据上一年表现相关的各种统计数据用LASSO模型来预测棒球运动员的薪水

3.1 导入函数

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Lasso, LassoCV
from sklearn.metrics import mean_squared_error

3.2 导入数据

df = pd.read_csv("Hitters.csv")
df.head()  

3.3 数据预处理

print(df.info())
#检查缺失行
print(df.isnull().sum())

# 删除缺失行
df = df.dropna()

# 对分类变量进行One-hot编码
dummies = pd.get_dummies(df[['League', 'Division', 'NewLeague']])
print(dummies.info())
print(dummies.head())

# 显示更新后的数据框
print(df)
print(df.dtypes)

3.4 定义变量和缩放数据

# 删除第一列
df = df.drop(df.columns[0], axis=1)
# 定义变量
y = df['Salary']
X_numerical = df.drop(['Salary', 'League', 'Division', 'NewLeague'], axis=1).astype('float64')
list_numerical = X_numerical.columns

# 创建全部特征
X = pd.concat([X_numerical, dummies[['League_N', 'Division_W', 'NewLeague_N']]], axis=1)
X.info()

# 数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=10)

# 特征缩放
scaler = StandardScaler().fit(X_train[list_numerical])
X_train[list_numerical] = scaler.transform(X_train[list_numerical])
X_test[list_numerical] = scaler.transform(X_test[list_numerical])

3.5 拟合模型

# 模型训练和评估
reg = Lasso(alpha=1)
reg.fit(X_train, y_train)

# 训练集性能
pred_train = reg.predict(X_train)
mse_train = mean_squared_error(y_train, pred_train)
print('训练集MSE:', round(mse_train, 2))
print('训练集R方:', round(reg.score(X_train, y_train) * 100, 2))

# 测试集性能
pred_test = reg.predict(X_test)
mse_test = mean_squared_error(y_test, pred_test)
print('测试集MSE:', round(mse_test, 2))
print('测试集R方:', round(reg.score(X_test, y_test) * 100, 2))

# Lasso系数可视化
alphas = np.linspace(0.01, 500, 100)
lasso = Lasso(max_iter=10000)
coefs = []

for a in alphas:
    lasso.set_params(alpha=a)
    lasso.fit(X_train, y_train)
    coefs.append(lasso.coef_)

ax = plt.gca()
ax.plot(alphas, coefs)
ax.set_xscale('log')
plt.axis('tight')
plt.xlabel('alpha')
plt.ylabel('Standardized Coefficients')
plt.title('Lasso coefficients as a function of alpha');

# 训练集MSE: 80571.73
# 训练集R方: 60.43
# 测试集MSE: 134426.33
# 测试集R方: 33.01

3.6 拟合交叉验证模型

这里为了缩短时间,用的五折交叉,一般可以用十折交叉验证

# 使用交叉验证的Lasso模型
model = LassoCV(cv=5, random_state=0, max_iter=10000)
model.fit(X_train, y_train)
lasso_best = Lasso(alpha=model.alpha_)
lasso_best.fit(X_train, y_train)

# 显示特征系数
print(list(zip(lasso_best.coef_, X.columns)))
print('训练集R方:', round(lasso_best.score(X_train, y_train) * 100, 2))
print('测试集R方:', round(lasso_best.score(X_test, y_test) * 100, 2))

# 最佳模型的均方误差
mse_best = mean_squared_error(y_test, lasso_best.predict(X_test))
print('测试集MSE:', round(mse_best, 2))

# 绘制每个折叠上的均方误差
plt.semilogx(model.alphas_, model.mse_path_, ":")
plt.plot(
    model.alphas_,
    model.mse_path_.mean(axis=-1),
    "k",
    label="Average across the folds",
    linewidth=2,
)
plt.axvline(
    model.alpha_, linestyle="--", color="k", label="alpha: CV estimate"
)
plt.legend()
plt.xlabel("alphas")
plt.ylabel("Mean square error")
plt.title("Mean square error on each fold")
plt.axis("tight")
plt.ylim(50000, 250000)

4. 讨论

Lasso回归是一种用于特征选择和稀疏性建模的线性回归方法。它通过加入L1正则化项来推动部分特征的系数稀疏化为零,从而实现对数据中最重要特征的选择和解释。Lasso回归在高维数据集和具有大量特征的情况下,可以提供简洁且解释性强的模型,并有助于减少过拟合问题。埋个预告,下篇整理L2正则化

更多推荐

DollarTree(美元树)验厂需要注意哪些方面?

【DollarTree(美元树)验厂需要注意哪些方面?】美元树(Dollartree),是美国的一元店。每件商品都只卖一美元,吃的、用的和玩的应有尽有。美元树在美国共拥有4900家门店,其中一半的连锁店,离沃尔玛不到三公里,号称商品比沃尔玛还便宜。而就靠开这样的连锁店,它去年销售收入59亿美元,利润为4亿美元,进入到《

Python爬虫自动切换爬虫ip的完美方案

在进行网络爬虫时,经常会遇到需要切换爬虫ip的情况,以绕过限制或保护自己的爬虫请求。今天,我将为你介绍Python爬虫中自动切换爬虫ip的终极方案,让你的爬虫更加高效稳定。步骤一:准备爬虫ip池首先,你需要准备一个可靠的爬虫ip池。爬虫ip池是由多个爬虫ip组成的集合,可以通过API或爬虫获取。你可以选择自建爬虫ip池

自动化测试、压力测试、持续集成

因为项目的原因,前段时间研究并使用了SoapUI测试工具进行自测开发的api。下面将研究的成果展示给大家,希望对需要的人有所帮助。SoapUI是什么?SoapUI是一个开源测试工具,通过soap/http来检查、调用、实现WebService的功能/负载/符合性测试。该工具既可作为一个单独的测试软件使用,也可利用插件集

CentOS下Redis6.x安装教程

Redis安装教程文章目录Redis安装教程一、安装包下载地址二、安装2.1上传服务器解压2.2安装编译所需依赖2.3编译安装三、启动与停止3.1守护进程启动3.2开机自启动一、安装包下载地址https://redis.io/download/目前最新的版本是7.0以上的版本,本次使用redis6.2.13的版本二、安

【Docker】Docker的使用案例以及未来发展、Docker Hub 服务、环境安全

前言Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux或Windows操作系统的机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。作者简介:辭七七,目前大二,正在学习C/C++,Java,Python等作者主页:七七的个

【Node.js】认识express并创建基本web服务器:

文章目录一、初识Express【1】Express简介【2】Express的基本使用【3】托管静态资源【4】nodemon二、Express路由【1】路由的概念【2】路由的使用三、Express中间件【1】中间件的概念【2】Express中间件的初体验【3】中间件的分类【4】自定义中间件四、使用Express写接口【1

Excel相关操作

文章目录4.Excel4.1周报业务逻辑讲解4.2基础概念4.3练习数据熟悉4.4数据透视表+图4.5常用函数sumsumifsumifssum和subtotal的区别if函数&嵌套vlookupmatchindex总结4.6周报搭建4.Excel4.1周报业务逻辑讲解在这种周报,可以根据平台和日期筛选所有数据,联动的

《动手学深度学习 Pytorch版》 5.6 GPU

5.6.1计算设备importtorchfromtorchimportnntorch.device('cpu'),torch.device('cuda:0')#cuda等价于cuda:0(只有一块显卡没法试别的块号)(device(type='cpu'),device(type='cuda',index=0))torc

ElasticSearch 因为索引字段改变,平滑迁移索引

问题:某个索引创建时,没有按照想要的mapping,进行创建。有个字段是text,不是想要的keyWord此时需要重新按照mapping创建新索引,并迁移数据,一、不使用别名的方式迁移1.创建新索引:使用Elasticsearch的PUT请求创建一个新的索引,例如PUT/new_index。在创建新索引时,确保按照想要

算法通关村第14关【青铜】| 什么是堆

1.堆的概念堆(Heap):堆是一种特殊的树状数据结构,通常用于实现优先队列和相关算法。堆分为最大堆(MaxHeap)和最小堆(MinHeap)两种类型,具体取决于根节点的值与子节点的关系。在最大堆中,根节点的值最大,而在最小堆中,根节点的值最小。堆具有以下特性:它是一个完全二叉树,通常使用数组来表示。在最大堆中,每个

数据库数据恢复-ORACLE常见故障有哪些?恢复数据的可能性高吗?

ORACLE数据库常见故障:1、ORACLE数据库无法启动或无法正常工作。2、ORACLE数据库ASM存储破坏。3、ORACLE数据库数据文件丢失。4、ORACLE数据库数据文件部分损坏。5、ORACLE数据库DUMP文件损坏。ORACLE数据库数据恢复可能性分析:1、ORACLE数据库无法启动或无法正常工作:突然出现

热文推荐