Redis群集

2023-09-19 09:10:37

1、redis群集三种模式
redis群集有三种模式,分别是主从同步/复制、哨兵模式、Cluster,下面会讲解一下三种模式的工作方式,以及如何搭建cluster群集

●主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。
缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。

●哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。
缺陷:写操作无法负载均衡;存储能力受到单机的限制;哨兵无法对从节点进行自动故障转移,在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作。

●集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。


2、Redis 主从复制
主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。

默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。


2.1 主从复制的作用

●数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
●故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
●负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
●高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。


2.2 主从复制流程

(1)若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。
(2)无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。
(3)后台进程完成缓存操作之后,Master机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。
(4)Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Mater同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。


2.3 搭建Redis 主从复制

Master节点: 192.168.10.23
Slave1节点: 192.168.10.14
Slave2节点: 192.168.10.15

systemctl stop firewalld
setenforce 0

-----安装 Redis-----
yum install -y gcc gcc-c++ make

tar zxvf redis-5.0.7.tar.gz -C /opt/

wget -p /opt http://download.redis.io/releases/redis-5.0.9.tar.gz
cd /opt/redis-5.0.7/
make
make PREFIX=/usr/local/redis install

cd /opt/redis-5.0.7/utils
./install_server.sh
......
Please select the redis executable path [/usr/local/bin/redis-server] /usr/local/redis/bin/redis-server      

ln -s /usr/local/redis/bin/* /usr/local/bin/


-----修改 Redis 配置文件(Master节点操作)-----
vim /etc/redis/6379.conf   redis.conf
bind 0.0.0.0                        #70行,修改监听地址为0.0.0.0
daemonize yes                        #137行,开启守护进程
logfile /var/log/redis_6379.log        #172行,指定日志文件目录
dir /var/lib/redis/6379                #264行,指定工作目录
appendonly yes                        #700行,开启AOF持久化功能


/etc/init.d/redis_6379 restart


-----修改 Redis 配置文件(Slave节点操作)-----
vim /etc/redis/6379.conf
bind 0.0.0.0                        #70行,修改监听地址为0.0.0.0
daemonize yes                        #137行,开启守护进程
logfile /var/log/redis_6379.log        #172行,指定日志文件目录
dir /var/lib/redis/6379                #264行,指定工作目录        
replicaof 192.168.10.23 6379        #288行,指定要同步的Master节点IP和端口
appendonly yes                        #700行,开启AOF持久化功能


/etc/init.d/redis_6379 restart


-----验证主从效果-----
在Master节点上看日志:
tail -f /var/log/redis_6379.log 
Replica 192.168.10.14:6379 asks for synchronization
Replica 192.168.10.15:6379 asks for synchronization

在Master节点上验证从节点:
redis-cli info replication
# Replication
role:master
connected_slaves:2
slave0:ip=192.168.10.14,port=6379,state=online,offset=1246,lag=0
slave1:ip=192.168.10.15,port=6379,state=online,offset=1246,lag=1


3、Redis 哨兵模式

主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。

哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。

#哨兵模式原理:
哨兵(sentinel):是一个分布式系统,用于对主从结构中的每台服务器进行监控,当出现故障时通过投票机制选择新的 Master并将所有slave连接到新的 Master。所以整个运行哨兵的集群的数量不得少于3个节点。


3.1 哨兵模式的作用

●监控:哨兵会不断地检查主节点和从节点是否运作正常。

●自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。

●通知(提醒):哨兵可以将故障转移的结果发送给客户端。


哨兵结构由两部分组成,哨兵节点和数据节点:
●哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
●数据节点:主节点和从节点都是数据节点。


3.2 故障转移机制

1.由哨兵节点定期监控发现主节点是否出现了故障
每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

2.当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3.由leader哨兵节点执行故障转移,过程如下:
●将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
●若原主节点恢复也变成从节点,并指向新的主节点;
●通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。


3.3 主节点的选举

1.过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
2.选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
3.选择复制偏移量最大,也就是复制最完整的从节点。


哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

3.4 搭建Redis 哨兵模式


Master节点:192.168.10.23
Slave1节点:192.168.10.14
Slave2节点:192.168.10.15

systemctl stop firewalld
setenforce 0

-----修改 Redis 哨兵模式的配置文件(所有节点操作)-----
vim /opt/redis-5.0.7/sentinel.conf
protected-mode no                                #17行,关闭保护模式
port 26379                                        #21行,Redis哨兵默认的监听端口
daemonize yes                                    #26行,指定sentinel为后台启动
logfile "/var/log/sentinel.log"                    #36行,指定日志存放路径
dir "/var/lib/redis/6379"                        #65行,指定数据库存放路径
sentinel monitor mymaster 192.168.10.23 6379 2    #84行,修改 指定该哨兵节点监控192.168.10.23:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
sentinel down-after-milliseconds mymaster 30000    #113行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000        #146行,故障节点的最大超时时间为180000(180秒)


-----启动哨兵模式-----
先启master,再启slave
cd /opt/redis-5.0.7/
redis-sentinel sentinel.conf &


-----查看哨兵信息-----
redis-cli -p 26379 info Sentinel
# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.20.23:6379,slaves=2,sentinels=3

-----故障模拟-----
#查看redis-server进程号:
ps -ef | grep redis
root      57031      1  0 15:20 ?        00:00:07 /usr/local/bin/redis-server 0.0.0.0:6379
root      57742      1  1 16:05 ?        00:00:07 redis-sentinel *:26379 [sentinel]
root      57883  57462  0 16:17 pts/1    00:00:00 grep --color=auto redis

#杀死 Master 节点上redis-server的进程号
kill -9 57031            #Master节点上redis-server的进程号

#验证结果
tail -f /var/log/sentinel.log
79805:X 07 Sep 2023 17:08:37.177 * Increased maximum number of open files to 10032 (it was originally set to 1024).
79805:X 07 Sep 2023 17:08:37.178 * Running mode=sentinel, port=26379.
79805:X 07 Sep 2023 17:08:37.178 # WARNING: The TCP backlog setting of 511 cannot be enforced because /proc/sys/net/core/somaxconn is set to the lower value of 128.
79805:X 07 Sep 2023 17:08:37.180 # Sentinel ID is 4ce73c3499388c1028b71c23c356b1e2f906f13e
79805:X 07 Sep 2023 17:08:37.180 # +monitor master mymaster 192.168.10.23 6379 quorum 2
79805:X 07 Sep 2023 17:08:37.181 * +slave slave 192.168.10.15:6379 192.168.10.15 6379 @ mymaster 192.168.10.23 6379
79805:X 07 Sep 2023 17:08:37.182 * +slave slave 192.168.10.14:6379 192.168.10.14 6379 @ mymaster 192.168.10.23 6379
79805:X 07 Sep 2023 17:09:15.690 * +sentinel sentinel 946a5648761c8ad6272396e92529b34eff02c45b 192.168.10.14 26379 @ mymaster 192.168.10.23 6379
79805:X 07 Sep 2023 17:09:49.976 * +sentinel sentinel 3337d6842f02d53b41be547bea728133cab34449 192.168.10.15 26379 @ mymaster 192.168.10.23 6379
79805:X 07 Sep 2023 17:14:43.557 # +sdown master mymaster 192.168.10.23 6379
79805:X 07 Sep 2023 17:14:43.610 # +odown master mymaster 192.168.10.23 6379 #quorum 3/2
79805:X 07 Sep 2023 17:14:43.610 # +new-epoch 1
79805:X 07 Sep 2023 17:14:43.610 # +try-failover master mymaster 192.168.10.23 6379
79805:X 07 Sep 2023 17:14:43.611 # +vote-for-leader 4ce73c3499388c1028b71c23c356b1e2f906f13e 1
79805:X 07 Sep 2023 17:14:43.613 # 3337d6842f02d53b41be547bea728133cab34449 voted for 4ce73c3499388c1028b71c23c356b1e2f906f13e 1
79805:X 07 Sep 2023 17:14:43.613 # 946a5648761c8ad6272396e92529b34eff02c45b voted for 4ce73c3499388c1028b71c23c356b1e2f906f13e 1
79805:X 07 Sep 2023 17:14:43.669 # +elected-leader master mymaster 192.168.10.23 6379
79805:X 07 Sep 2023 17:14:43.670 # +failover-state-select-slave master mymaster 192.168.10.23 6379
79805:X 07 Sep 2023 17:14:43.773 # +selected-slave slave 192.168.10.14:6379 192.168.10.14 6379 @ mymaster 192.168.10.23 6379
79805:X 07 Sep 2023 17:14:43.773 * +failover-state-send-slaveof-noone slave 192.168.10.14:6379 192.168.10.14 6379 @ mymaster 192.168.10.23 6379
79805:X 07 Sep 2023 17:14:43.857 * +failover-state-wait-promotion slave 192.168.10.14:6379 192.168.10.14 6379 @ mymaster 192.168.10.23 6379
79805:X 07 Sep 2023 17:14:44.719 # +promoted-slave slave 192.168.10.14:6379 192.168.10.14 6379 @ mymaster 192.168.10.23 6379
79805:X 07 Sep 2023 17:14:44.719 # +failover-state-reconf-slaves master mymaster 192.168.10.23 6379
79805:X 07 Sep 2023 17:14:44.808 * +slave-reconf-sent slave 192.168.10.15:6379 192.168.10.15 6379 @ mymaster 192.168.10.23 6379
79805:X 07 Sep 2023 17:14:45.736 * +slave-reconf-inprog slave 192.168.10.15:6379 192.168.10.15 6379 @ mymaster 192.168.10.23 6379
79805:X 07 Sep 2023 17:14:45.736 * +slave-reconf-done slave 192.168.10.15:6379 192.168.10.15 6379 @ mymaster 192.168.10.23 6379
79805:X 07 Sep 2023 17:14:45.814 # -odown master mymaster 192.168.10.23 6379
79805:X 07 Sep 2023 17:14:45.814 # +failover-end master mymaster 192.168.10.23 6379
79805:X 07 Sep 2023 17:14:45.814 # +switch-master mymaster 192.168.10.23 6379 192.168.10.14 6379
79805:X 07 Sep 2023 17:14:45.815 * +slave slave 192.168.10.15:6379 192.168.10.15 6379 @ mymaster 192.168.10.14 6379
79805:X 07 Sep 2023 17:14:45.815 * +slave slave 192.168.10.23:6379 192.168.10.23 6379 @ mymaster 192.168.10.14 6379
79805:X 07 Sep 2023 17:15:15.860 # +sdown slave 192.168.10.23:6379 192.168.10.23 6379 @ mymaster 192.168.10.14 6379

2.redis-cli -p 26379 INFO Sentinel
# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.10.14:6379,slaves=2,sentinels=3


4、Redis 群集模式

集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。

集群由多个节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。


4.1 集群的作用

(1)数据分区:数据分区(或称数据分片)是集群最核心的功能。
集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。

(2)高可用:集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

4.2 Redis集群的数据分片

Redis集群引入了哈希槽的概念
Redis集群有16384个哈希槽(编号0-16383)
集群的每个节点负责一部分哈希槽
每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作

#以3个节点组成的集群为例:
节点A包含0到5460号哈希槽
节点B包含5461到10922号哈希槽
节点C包含10923到16383号哈希槽

#Redis集群的主从复制模型
集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用。


4.3 搭建Redis 群集模式

redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在同一台服务器上模拟:
以端口号进行区分:3个主节点端口号:6001/6002/6003,对应的从节点端口号:6004/6005/6006。

cd /etc/redis/
mkdir -p redis-cluster/redis600{1..6}

for i in {1..6}
do
cp /opt/redis-5.0.7/redis.conf /etc/redis/redis-cluster/redis600$i
cp /opt/redis-5.0.7/src/redis-cli /opt/redis-5.0.7/src/redis-server /etc/redis/redis-cluster/redis600$i
done

#开启群集功能:
#其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样。
cd /etc/redis/redis-cluster/redis6001
vim redis.conf
#bind 127.0.0.1                            #69行,注释掉bind 项,默认监听所有网卡
protected-mode no                        #88行,修改,关闭保护模式
port 6001                                #92行,修改,redis监听端口,
daemonize yes                            #136行,开启守护进程,以独立进程启动
cluster-enabled yes                        #832行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf        #840行,取消注释,群集名称文件设置
cluster-node-timeout 15000                #846行,取消注释群集超时时间设置
appendonly yes                            #700行,修改,开启AOF持久化

#启动redis节点
分别进入那六个文件夹,执行命令:redis-server redis.conf ,来启动redis节点
cd /etc/redis/redis-cluster/redis6001
redis-server redis.conf

for d in {1..6}
do
cd /etc/redis/redis-cluster/redis600$d
redis-server redis.conf
done

ps -ef | grep redis

#启动集群
redis-cli --cluster create 127.0.0.1:6001 127.0.0.1:6002 127.0.0.1:6003 127.0.0.1:6004 127.0.0.1:6005 127.0.0.1:6006 --cluster-replicas 1

#六个实例分为三组,每组一主一从,前面的做主节点,后面的做从节点。下面交互的时候 需要输入 yes 才可以创建。
--replicas 1 表示每个主节点有1个从节点。

#测试群集
redis-cli -p 6001 -c                    #加-c参数,节点之间就可以互相跳转
127.0.0.1:6001> cluster slots            #查看节点的哈希槽编号范围
1) 1) (integer) 5461
   2) (integer) 10922                                    #哈希槽编号范围
   3) 1) "127.0.0.1"
      2) (integer) 6003                                    #主节点IP和端口号
      3) "fdca661922216dd69a63a7c9d3c4540cd6baef44"
   4) 1) "127.0.0.1"
      2) (integer) 6004                                    #从节点IP和端口号
      3) "a2c0c32aff0f38980accd2b63d6d952812e44740"
2) 1) (integer) 0
   2) (integer) 5460
   3) 1) "127.0.0.1"
      2) (integer) 6001
      3) "0e5873747a2e26bdc935bc76c2bafb19d0a54b11"
   4) 1) "127.0.0.1"
      2) (integer) 6006
      3) "8842ef5584a85005e135fd0ee59e5a0d67b0cf8e"
3) 1) (integer) 10923
   2) (integer) 16383
   3) 1) "127.0.0.1"
      2) (integer) 6002
      3) "816ddaa3d1469540b2ffbcaaf9aa867646846b30"
   4) 1) "127.0.0.1"
      2) (integer) 6005
      3) "f847077bfe6722466e96178ae8cbb09dc8b4d5eb"

127.0.0.1:6001> set name zhangsan
-> Redirected to slot [5798] located at 127.0.0.1:6003
OK

127.0.0.1:6001> cluster keyslot name                    #查看name键的槽编号

redis-cli -p 6004 -c
127.0.0.1:6004> keys *                            #对应的slave节点也有这条数据,但是别的节点没有
1) "name"

更多推荐

在 Linux 文件系统中使用 attr 添加扩展属性

我使用开源的XFS文件系统是为了其扩展属性带来的小小便利。扩展属性是一种为我的数据添加上下文的独特方式。“文件系统”是一个描述你的计算机怎样跟踪你创建的所有文件的完美词语。你的计算机存储有大量的数据,无论是文档、配置文件还是数以千计的照片。这需要一种对人和机器都友好的方式。诸如Ext4、XFS、JFS、BtrFS的文件

的修大数据管理平台有哪些功能模块?它可以为企业带来什么好处?

的修大数据管理平台的功能比较强大,它提供了报修、维修、巡检、能耗、智识库、管线智慧云等应用场景服务,同时还可以为企业提供维保进度追踪、员工考核、服务流程管控、设备资产管理等一站式解决方案。平台通过多渠道报修、“一站式”投诉建议服务、企业云课堂、智能巡检、配件管理、多维度数据分析等功能,打造了移动、便捷、高效、安全、智能

国外发达国家码农是真混得好么?

来看看花旗工作十多年的码农怎么说吧!美国最大的论坛Reddit,之前有一个热帖:一个程序员说自己喝醉了,软件工程师已经当了10年,心里有好多话想说,“我可能会后悔今天说了这些话。”他洋洋洒洒写了一大堆,获得9700多个赞。内容很有意思,和题主“国外发达国家码农真的混的好么”这个问题很贴切,而且是10年老程的员的肺腑之言

外包干了2个月,技术退步明显.......

先说一下自己的情况,大专生,18年通过校招进入武汉某软件公司,干了接近4年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试,已经让我变得不思进取,谈了2年的女朋友也因为我的心态和工资和我分手了。于是,我决定要改变现状,冲击下大厂。刚开始准备时

Spring Cloud超越微服务:服务网格的崭露头角

文章目录1.微服务的挑战2.什么是服务网格?3.SpringCloud和服务网格服务发现负载均衡安全性服务网格扩展4.服务网格的优势4.1.解耦通信逻辑4.2.提高可观察性4.3.灰度发布和流量控制4.4.安全性5.未来展望6.结论🎉欢迎来到架构设计专栏~SpringCloud超越微服务:服务网格的崭露头角☆*o(≧

大数据-Spark-Spark开发高频面试题

一、spark的内存分布堆内内存:在这使用堆内内存的时候,如果我们设置了堆内内存2个g的话,读取的数据也是两个g,此时又来两个g的数据,这样就会产生OOM溢出,因为处理完两个g的数据,并不会马上进行GC。堆外内存:这样我们就可以使用堆外内存,也就是物理内存,堆外内存可以精准的申请和释放空间,不需要Gc,性能比较高,提升

基于Hadoop的MapReduce网站日志大数据分析(含预处理MapReduce程序、hdfs、flume、sqoop、hive、mysql、hbase组件、echarts)

需要本项目的可以私信博主!!!本项目包含:PPT,可视化代码,项目源码,配套Hadoop环境(解压可视化),shell脚本,MapReduce代码,文档以及相关说明教程,大数据集!本文介绍了一种基于Hadoop的网站日志大数据分析方法。本项目首先将网站日志上传到HDFS分布式文件系统,然后使用MapReduce进行数据

Microsoft Excel 101 简介

什么是MicrosoftExcel?MicrosoftExcel是一个电子表格程序,用于记录和分析数值数据。将电子表格想像成构成表格的列和行的集合。字母通常分配给列,数字通常分配给行。列和行相交的点称为像元。单元格的地址由代表列的字母和代表行的数字给出。让我们使用下图说明这一点。为什么要学习MicrosoftExcel

IF,AND,OR 或嵌套 IF &在 Excel 中不是逻辑函数

事情并非总是我们希望的那样。意外的事情可能发生。例如,假设您必须将数字相除。尝试将任何数字除以零(0)都会产生错误。在这种情况下,逻辑功能很方便。在本教程中,我们将涵盖以下主题。在本教程中,我们将涵盖以下主题。什么是逻辑功能此功能使我们能够在执行公式和函数时引入决策制定。功能习惯于;检查条件是对还是错结合多个条件Wha

【Linux】线程池 | 自旋锁 | 读写锁

文章目录一、线程池1.线程池模型和应用场景2.单例模式实现线程池(懒汉模式)二、其他常见的锁1.STL、智能指针和线程安全2.其他常见的锁三、读者写者问题1.读者写者模型2.读写锁一、线程池1.线程池模型和应用场景线程池是一种线程使用模式。线程过多会带来调度开销,进而影响缓存局部性和整体性能。而线程池维护着多个线程,等

深度学习之模型压缩、加速模型推理

简介当将一个机器学习模型部署到生产环境中时,通常需要满足一些在模型原型阶段没有考虑到的要求。例如,在生产中使用的模型将不得不处理来自不同用户的大量请求。因此,您将希望进行优化,以获得较低的延迟和/或吞吐量。延迟:是任务完成所需的时间,就像单击链接后加载网页所需的时间。它是开始某项任务和看到结果之间的等待时间。吞吐量:是

热文推荐