AI实战营第二期 第五节 《目标检测与MMDetection》——笔记6

2023-07-16 06:34:00

摘要

在这里插入图片描述
MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。它是 OpenMMLab 项目的一部分。是目前应用最广的算法库

主分支代码目前支持 PyTorch 1.6 以上的版本。代码链接:https://gitee.com/open-mmlab/mmdetection。

主要特性

  • 模块化设计。MMDetection 将检测框架解耦成不同的模块组件,通过组合不同的模块组件,用户可以便捷地构建自定义的检测模型

  • 支持多种检测任务。MMDetection 支持了各种不同的检测任务,包括目标检测,实例分割,全景分割,以及半监督目标检测。

  • 速度快。基本的框和 mask 操作都实现了 GPU 版本,训练速度比其他代码库更快或者相当,包括 Detectron2, maskrcnn-benchmark 和 SimpleDet。

  • 性能高。MMDetection 这个算法库源自于 COCO 2018 目标检测竞赛的冠军团队 MMDet 团队开发的代码,我们在之后持续进行了改进和提升。 新发布的 RTMDet 还在实时实例分割和旋转目标检测任务中取得了最先进的成果,同时也在目标检测模型中取得了最佳的的参数量和精度平衡。

【课程链接】https://www.bilibili.com/video/BV1Ak4y1p7W9/
【讲师介绍】王若晖 OpenMMLab青年研究员
一阶段算法:SSD、YOLO系列等。二阶段:Faster R-CNN、Mask R-CNN等。

在这里插入图片描述

在这里插入图片描述

常用概念

框、边界框

框泛指图像上的矩形框,边界横平坚直
描述一个框需要 4 个像素值:

  • 方式 1: 左上右下边界坐标 (l, t, r, b)
  • 方式2: 中心坐标和框的长宽 (x, y, w, h)

边界框通常指紧密包围感兴趣物体的框 检测任务要求为图中出现的每个物体预测一个边界框

在这里插入图片描述

交并比 (loU)

交并比 (loU) 定义为两矩形框交集面积与并集面积之比,是矩形框重合程度的衡量指标

在这里插入图片描述

感受野

感受野: 神经网络中,一个神经元能"看到"的原图的区域
换句话说:

  • 为了计算出这个神经元的激活值,原图上哪些像素参与运算了?
    再换句话说:
  • 这个神经元表达了图像上哪个区域内的内容?
  • 这个神经元是图像上哪个区域的特征?

在这里插入图片描述
感受野的中心

  • 一般结论比较复杂
  • 对于尺寸 3 × 3 3 \times 3 3×3 p a d = 1 p a d=1 pad=1 的卷积(或池化)堆叠起来的模 型,感受野中心=神经元再特征图上的坐标 × \times × 感受野步长
    感受野的步长(=降采样率=特称图尺寸的缩减倍数)
  • 神经网络某一层上, 相邻两个神经元的感受野的距离
  • 步长=这一层之前所有stride的乘积

有效感受野

感受野一般很大,但不同像素对激活值的贡献是不同的
换句话说:
激活值对感受野内的像素求导数,大小不同
影响比较大的像素通常聚集在中间区域,可以认为对应神经元 提取了有效感受野范围内的特征

在这里插入图片描述

置信度

置信度(Confidence Score):模型认可自身预测结果的程度,通常需要为每个框预测一个置信度 我们倾向认可置信度高的预测结果,例如有两个重复的预测结果,丟弃置信度低的

  • 部分算法直接取模型预测物体属于特定类别的概率
  • 部分算法让模型单独预测一个置信度(训练时有GT,可以得相关信息作为监督)
    在这里插入图片描述

目标检测的基本思路

难点

  • 需要同时解决 “是什么" 和 “在哪里"
  • 图中物体位置、数量、尺度变化多样

在这里插入图片描述

滑框

-一个好的检测器应满足不重、不漏的要求, 滑窗是实现这个要求的一个朴素手段。

  1. 设定一个固定大小的窗口

  2. 遍历图像所有位置,所到之处用分类模型 (假没已经汌统好) 识别窗口中的内容

  3. 为了检测不同大小、不同形状的物体,可以使用不同大小、长宽比的窗口扫描图片

在这里插入图片描述
缺点,效率低、冗余计算。
在这里插入图片描述

改进思路 1:使用启发式算法替换榩力退历
用相对低计算量的方式祖筡出可能包含物体的位置,再使用卷积网络预测 早期二阶段方法使用, 依款外部算法, 系统实现复杂

改进2:分析重复计算,减少冗余计算。

在这里插入图片描述

在这里插入图片描述

在特征图进行密集计算

得到框中物体的分类概率

在这里插入图片描述

边界框回归

计算出精确的位置!

在这里插入图片描述

基于锚框VS无锚框

在这里插入图片描述

NMS(非极大值抑制)

滑窗类算法通常会在物体周围给出多个相近的检测框 这些框实际指向同一物体,只需要保留其中置信度最高的

在这里插入图片描述

使周密集预测模型进行推理步骤

基本流程

  • 用模型做密集预测,得到预测图,每个位置包含类别概率、边界框回归的预侧结果
  • 保留预训类别不是背景的"框"
  • 基于"框"中心,和边界框回归结果,进行边界框解码
  • 后处理:非极大值抑制 (Non-Maximum Suppression)

如何训练

如何训练

  • 给定图像数据集和标注框,如何训练一个密集预测的检别模型
    回想:认练神经网络的一般套路
  • 模型基于当前参数给出给出预测
  • 计算 loss: 衡量预测的好坏
  • 反传 loss、更新参数
    如何套用到密集预测中?

密集预测模型的训练

  • 检测头在每个位置产生一个预测 (有无物体、类别、位置偏移量)
  • 该预测值应与某个真值比较产生损失,进而才可以训练检测器
  • 但这个真值在数据标注中并不存在, 标注只标出了有物体的地方
  • 我们需要基于稀疏的标注框为密集预测的结果产生真值,这个过程称为匹聶 (Assignment)

在这里插入图片描述

匹配的基本思路

  • 对于每个标注框,在特征图上找到与其最接近的位置(可以不止一个),该位置的分类真值设置为对 应的物体
  • 位置的接近程度,通常基于中心位置或者与基准框的 IoU 判断
  • 其余位置真值为无物体
  • 采样:选取一部分正、负样本计算 Loss (例如可以不计算真值框边界位置的loss)

在这里插入图片描述

密集检测的基本范式

在这里插入图片描述

多尺度预测

如何处理尺度问题

图像中物体大小可能有很大差异 ( 10 p x ∼ 500 p x ) (10 \mathrm{px} \sim 500 \mathrm{px}) (10px500px)
朴素的密集范式中,如果让模型基于主干网络最后一层或倒数第二层特征图进行预测:

  • 受限于结构 (感受野), 只擅长中等大小的物体
  • 高层特征图经过多次采样,位置信息逐层丢失,小物体检测能力较弱,定位精度较低

在这里插入图片描述

基于锶框(Anchor)

在原图上设置不同尺寸的基准哐,称为锚诓,基于特征分别预测每个锚诓中是否包含物体
(1) 可以生成不同尺寸的预测框
(2) 可以在同一位置生成多个提议框覆盖不同物体

在这里插入图片描述

图像金字塔 Image Pyramid

将图像缩放到不同大小,形成图像金字塔
检测算法在不同大小图像上即可检测出不同大小物体
优势:算法不经改动可以适应不同尺度的物体
劣势: 计算成本成倍增加
可用于模型集成等不在意计算成本的情况

在这里插入图片描述

基于层次化特征

基于主干网络自身产生的多级特征图产生预测结果
由于不同层的感受大小不同,因此不同层级的特征天然适用于检测不同尺寸的物体
优势:计算成本低
劣势: 低层特征抽象级别不够,预测物体比较困难

在这里插入图片描述

特征金字塔网络 Feature Pyramid Network (2016)

改进思路: 高层次特征包含足㿟抽象语义 信息。将高层特征融入低层特征,补充低 层特征的语义信息
融合方法:特征求和

在这里插入图片描述

多尺度的密集预测基本范式

在这里插入图片描述

单阶段算法

单阶段算法直接通过密集预郧产生检测框,相比于两阶段算法,模型结构 简单、速度快、易于在设备上部署
早期由于主干网络、多尺度技术等相关技术不成昡,单阶段算法在性能上 不如两阶段算法, 但因为速度和简洁的优势仍受到工业界青睐
随着单阶段算法性能逐渐提升,成为目标检测的主流方法

在这里插入图片描述

Region Proposal Network (2015)

  • RPN → P r o p o s e R e g i o n = \rightarrow Propose Region = ProposeRegion= 初步筛选出图像中包含物体的位置,不预测具体类别
  • RPN 算"半个检测器", 是二阶段算法 Faster RCNN 的第一阶段
  • RPN 是基于密集预测的

在这里插入图片描述
RPN 的主干网络,去掉蓝色区域。

在这里插入图片描述

YOLO: You Only Look Once (2015)

最早的单阶段检测器之一, 激发了单阶段算法的研究潮流
主干网络:自行设计的 DarkNet 结构,产生 7 × 7 × 1024 7 \times 7 \times 1024 7×7×1024 维的特征图
检测头: 2 层全连接层产生 7 × 7 7 \times 7 7×7 组预测结果,对应图中 7 × 7 7 \times 7 7×7 个空间位置上物体的类别和边界框的位置

在这里插入图片描述
YOLO 的匹配与框编码

  • 将原图切分成 S × S \mathrm{S} \times \mathrm{S} S×S 大小的格子,对应预测图上 S × S \mathrm{S} \times \mathrm{S} S×S 个位置
  • 如果原图上某个物体的中心位于某个格子内,则对应位置的预测值应给出物体类别和B组边界框位置
  • 其余位置应预测为背景类别,不关心边界框预测结果

在这里插入图片描述

YOLO 的优点和缺点

快! 在Pascal VOC 数据集上,使用自己设计的 DarkNet 结构可以达到实时速度,使用相同的 VGG 可以达到 3 倍于 Faster R-CNN 的速度

在这里插入图片描述

  • 由于每个格子只能预测 1 个物体,因此对重叠物体、尤其是大量重叠的小物体容易产生漏检
  • 直接回归边界框 (无锚框) 有难度,回归误差较大,YOLO V2 开始使用锚框

SSD: Single Shot MultiBox Detector (2016)

主干网络:使用 VGG + 额外卷积层,产生 11 级特征图
检测头:在 6 级特征图上进行密集预测,产生所有位置、不同尺度的预测结果

在这里插入图片描述

RetinaNet (2017)

特征生成: ResNet 主干网络 + FPN 产生 P_{3} \sim P_{7} 共 5 级特征图,对应降采样率 8 128 倍
多尺度针框:每级特征图上设置 3 种尺寸×3 种长宽比的针框,覆盖 32 813 像素尺寸
密集预测头:两分支、 5 层卷积构成的检测头,针对每个针框产生 K 个二类预测以及 4 个边界框偏移量 损失函数: Focal Loss

在这里插入图片描述

单阶段算法面临的正负样本不均衡问题

  • 单阶段算法共产生尺度数 × \times × 位置数 × \times × 针框数个预测
  • 而这些预测之中,只有少量针框的真值为物体 (正样本),大部分针框的真值为背景(负样本)

在这里插入图片描述

YOLO v3 (2018)

  • 自定义的 DarkNet-53 主干网络和类 FPN 结构,产生 1/8、1/16、1/32 降采样率的 3 级特征图
  • 在每级特征图上设置 3 个尺寸的针框,针框尺寸通过对真值框聚类得到
  • 两层卷积构成的密集预测头,在每个位置、针对每个锚框产生 80 个类别预测、4个边界框偏移量、1个 objectness 预 测,每级特征图 3 × ( 80 + 4 + 1 ) = 255 3 \times(80+4+1)=255 3×(80+4+1)=255 通道的预测值

在这里插入图片描述

无锚框算法

基于锚框VS 无锚框

在这里插入图片描述

FCOS, Fully Convolutional One-Stage (2019)

模型结构与 RetinaNet 基本相同: 主干网络 + FPN +两分支、5 层卷积构成的密集预测头 预测目标不同:对于每个点位,预测类别、边界框位置和中心度三组数值

在这里插入图片描述

CenterNet (2019)

针对 2 D 检测的算法,将传统检测算法中的 “以框表示物体" 变成 “以中心点表示物体",将 2D 检测建模 为关键点检测和额外的回归任务,一个框架可以同时覆盖 2 D 检测、3D 检测、姿态估计等一系列任务

在这里插入图片描述

YOLO X (2021)

以 YOLO V3 为基准模型改进的无针框检测器

  • Decouple Head 结构
  • 更多现代数据增强策略
  • SimOTA 分配策略
  • 从小到大的一系列模型

SOTA 的精度和速度

YoloV8

在这里插入图片描述
在这里插入图片描述

单阶段算法和元铓框算法的总结

在这里插入图片描述

更多推荐

VirtualBox安装RockyLinux并使用ssh访问

文章目录1前言2安装RockyLinux2.1新建虚拟机2.2设置虚拟机内存和CPU数量2.3设置虚拟机硬盘大小2.4完成设置2.5启动虚拟机2.6RockyLinux的安装2.6.1直接回车2.6.2等待check完成2.6.3设置语言2.6.4设置最小化安装2.6.5去除分区设置的感叹号2.6.7设置root账号的

什么是生成对抗网络 (GAN)?

什么是生成对抗网络(GAN)?钦吉兹·赛义德贝利·一、说明GAN(GenerativeAdversarialNetwork)网络是一种深度学习模型,由两个神经网络——生成器和判别器组成。生成器负责生成虚假的数据,而判别器负责判断数据的真实性。它们之间通过对抗学习的方式相互影响和学习,最终生成器能够生成更加真实的数据,而

Compositional Minimax Optimization学习之路

梯度最优化理论最优化基础---基本概念:凸优化、梯度、Jacobi矩阵、Hessian矩阵_哔哩哔哩_bilibili从图像来看:存在两点连线上的点不在集合内定义ax1+(1-a)x2其实就是两点连线上的点可用与函数围成的面积和与坐标轴围成的面积角度理解凸函数凸优化在定义域和F(X)都是凸集的问题(凸凸问题),就是凸优

如何使用Python和Numpy实现简单的2D FDTD仿真:详细指南与完整代码示例

第一部分:引言及FDTD简介引言:计算机模拟在许多科学和工程领域中都得到了广泛应用。在电磁学领域,有许多不同的数值方法用于模拟波的传播和散射。其中最为知名和广泛使用的一种方法是有限差分时域方法(FiniteDifferenceTimeDomain,FDTD)。在这篇文章中,我们将使用Python和Numpy库为你提供一

ES-索引管理

前言数据类型​搜索引擎是对数据的检索,所以我们先从生活中的数据说起。我们生活中的数据总体分为两种:结构化数据非结构化数据结构化数据:也称作行数据,是由二维表结构来逻辑表达和实现的数据,严格地遵循数据格式与长度规范,主要通过关系型数据库进行存储和管理。指具有固定格式或有限长度的数据,如数据库,元数据等。非结构化数据:又可

ArcGIS Maps SDK for JavaScript系列之四:添加自定义底图

目录Basemap类介绍Basemap类的常用属性Basemap类的常用方法使用Basemap添加自定义底图引用Basemap引用切片图层创建一个新的Basemap对象将自定义图层应用到地图视图中引入并创建Camera对象引入并创建SceneView对象Basemap类介绍Basemap类是ArcGISMapsSDKf

TypeScript算法题实战——剑指 Offer篇(5)

目录一、平衡二叉树1.1、题目描述1.2、题解二、数组中数字出现的次数2.1、题目描述2.2、题解三、数组中数字出现的次数II3.1、题目描述3.2、题解四、和为s的两个数字4.1、题目描述4.2、题解五、和为s的连续正数序列5.1、题目描述5.2、题解六、翻转单词顺序6.1、题目描述6.2、题解七、滑动窗口的最大值7

竞赛 基于机器视觉的银行卡识别系统 - opencv python

1前言🔥优质竞赛项目系列,今天要分享的是基于深度学习的银行卡识别算法设计该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!🧿更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate2算法设计流程银行卡卡号识别技术原理是先对银行卡图像定位,保障获取图像绝对位置

OpenCV(四十六):特征点匹配

1.特征点匹配的定义特征点匹配是一种在两幅图像中寻找相互对应的特征点,并建立它们之间的对应关系的过程。具体而言,首先通过特征检测算法在两幅图像中寻找相互对应的特征点,然后,对于每个特征点,通过描述子提取算法计算其描述子,最后,使用匹配算法对两组特征点的描述子进行比较,以找到相互匹配的特征点对。2.DMatch()用于表

XREAL 联合创始人吴克艰谈AR:下一代计算平台及其关键技术

//编者按:一种行业观点是,AR或是未来十年、三十年的革命性技术,是下一代计算平台。近半个世纪,我们总能听到苹果在AR行业的创新动作,开辟了新的硬件范式。AR/VR行业为苹果不断欢呼的同时,激发了人们的好奇心——究竟,人类在戴上AR眼镜的那一瞬间,感知与交互从二维平面延伸到三维空间,科幻片场景触手可及之时,和世界的交互

Android studio 断点调试、日志断点

目录参考文章参考文章1、运行调试2、调试操作3、断点类型行断点的使用场景属性断点的使用场景异常断点的使用场景方法断点的使用场景条件断点日志断点4、断点管理区参考文章参考文章1、运行调试开启Debug调试模式有两种方式:DebugRun:直接以Debug模式运行APP,该模式的优点是可以调试程序启动相关的代码,例如App

热文推荐