Stream

2023-09-20 16:56:12

很多参考自不同的博主,仅供自己学习做笔记,谢谢。

1. 概述

Java 8 新增的Stream,配合同版本出现的 Lambda ,给我们操作集合(Collection)提供了极大的便利。

Stream将要处理的元素集合看作一种流,在流的过程中,借助Stream API对流中的元素进行操作,比如:筛选、排序、聚合等。

Stream可以由数组或集合创建,对流的操作分为两种:

  • 中间操作,每次返回一个新的流,可以有多个。
  • 终端操作,每个流只能进行一次终端操作,终端操作结束后流无法再次使用。终端操作会产生一个新的集合或值。

Stream有几个特性:

  • stream不存储数据,而是按照特定的规则对数据进行计算,一般会输出结果。
  • stream不会改变数据源,通常情况下会产生一个新的集合或一个值。
  • stream具有延迟执行特性,只有调用终端操作时,中间操作才会执行。

2. 创建

Stream可以通过集合数组创建。

1、通过 java.util.Collection.stream() 方法用集合创建流

List<String> list = Arrays.asList("a", "b", "c");
// 创建一个顺序流
Stream<String> stream = list.stream();
// 创建一个并行流
Stream<String> parallelStream = list.parallelStream();

2、使用java.util.Arrays.stream(T[] array)方法用数组创建流

int[] array={1,3,5,6,8};
IntStream stream = Arrays.stream(array);

3、使用Stream的静态方法:of()、iterate()、generate()

Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5, 6);

Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 3).limit(4);
stream2.forEach(System.out::println);

Stream<Double> stream3 = Stream.generate(Math::random).limit(3);
stream3.forEach(System.out::println);

输出结果:

0 3 6 9
0.6796156909271994
0.1914314208854283
0.8116932592396652

stream和parallelStream的简单区分: stream是顺序流,由主线程按顺序对流执行操作,而parallelStream是并行流,内部以多线程并行执行的方式对流进行操作,但前提是流中的数据处理没有顺序要求。例如筛选集合中的奇数,两者的处理不同之处:

在这里插入图片描述
如果流中的数据量足够大,并行流可以加快处速度。

除了直接创建并行流,还可以通过parallel()把顺序流转换成并行流:

Optional<Integer> findFirst = list.stream().parallel().filter(x->x>6).findFirst();

3. 使用

在使用stream之前,先理解一个概念:Optional 。

Optional类是一个可以为null的容器对象。如果值存在则isPresent()方法会返回true,调用get()方法会返回该对象。

案例使用的员工类

这是后面案例中使用的员工类:

List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, "male", "New York"));
personList.add(new Person("Jack", 7000, "male", "Washington"));
personList.add(new Person("Lily", 7800, "female", "Washington"));
personList.add(new Person("Anni", 8200, "female", "New York"));
personList.add(new Person("Owen", 9500, "male", "New York"));
personList.add(new Person("Alisa", 7900, "female", "New York"));

class Person {
	private String name;  // 姓名
	private int salary; // 薪资
	private int age; // 年龄
	private String sex; //性别
	private String area;  // 地区

	// 构造方法
	public Person(String name, int salary, int age,String sex,String area) {
		this.name = name;
		this.salary = salary;
		this.age = age;
		this.sex = sex;
		this.area = area;
	}
	// 省略了get和set,请自行添加

}

3.1 遍历/匹配(foreach/find/match)

Stream也是支持类似集合的遍历和匹配元素的,只是Stream中的元素是以Optional类型存在的。Stream的遍历、匹配非常简单。

在这里插入图片描述

// import已省略,请自行添加,后面代码亦是

public class StreamTest {
	public static void main(String[] args) {
        List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);

        // 遍历输出符合条件的元素
        list.stream().filter(x -> x > 6).forEach(System.out::println);
        // 匹配第一个
        Optional<Integer> findFirst = list.stream().filter(x -> x > 6).findFirst();
        // 匹配任意(适用于并行流)
        Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6).findAny();
        // 是否包含符合特定条件的元素
        boolean anyMatch = list.stream().anyMatch(x -> x > 6);
        System.out.println("匹配第一个值:" + findFirst.get());
        System.out.println("匹配任意一个值:" + findAny.get());
        System.out.println("是否存在大于6的值:" + anyMatch);
    }
}

3.2 筛选(filter)

筛选,是按照一定的规则校验流中的元素,将符合条件的元素提取到新的流中的操作。

在这里插入图片描述
案例一:筛选出Integer集合中大于7的元素,并打印出来

public class StreamTest {
	public static void main(String[] args) {
		List<Integer> list = Arrays.asList(6, 7, 3, 8, 1, 2, 9);
		Stream<Integer> stream = list.stream();
		stream.filter(x -> x > 7).forEach(System.out::println);
	}
}

案例二: 筛选员工中工资高于8000的人,并形成新的集合。

public class StreamTest {
	public static void main(String[] args) {
		List<Person> personList = new ArrayList<Person>();
		personList.add(new Person("Tom", 8900, 23, "male", "New York"));
		personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
		personList.add(new Person("Anni", 8200, 24, "female", "New York"));
		personList.add(new Person("Owen", 9500, 25, "male", "New York"));
		personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

		List<String> fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName)
				.collect(Collectors.toList());
		System.out.print("薪资高于8000美元的员工:" + fiterList);
	}
}

3.3 聚合(max/min/count)

在这里插入图片描述

案例一:获取String集合中最长的元素。

		List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6);

		// 自然排序
		Optional<Integer> max = list.stream().max(Integer::compareTo);
		// 自定义排序(从大到小排序)
		Optional<Integer> max2 = list.stream().max((o1, o2) -> o2 - o1);
		System.out.println("自然排序的最大值:" + max.get());
		System.out.println("自定义排序的最大值:" + max2.get());

案例二:获取Integer集合中的最大值。


		List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6);

		// 自然排序
		Optional<Integer> max = list.stream().max(Integer::compareTo);
		// 自定义排序(从大到小排序)
		Optional<Integer> max2 = list.stream().max((o1, o2) -> o1 - o2);
		System.out.println("自然排序的最大值:" + max.get());
		System.out.println("自定义排序的最大值:" + max2.get());

案例三:获取员工薪资最高的人。


		List<Person> personList = new ArrayList<Person>();
		personList.add(new Person("Tom", 8900, 23, "male", "New York"));
		personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
		personList.add(new Person("Anni", 8200, 24, "female", "New York"));
		personList.add(new Person("Owen", 9500, 25, "male", "New York"));
		personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

		Optional<Person> max = personList.stream().max(Comparator.comparingInt(Person::getSalary));
		System.out.println("员工薪资最大值:" + max.get().getSalary());

案例四:计算Integer集合中大于6的元素的个数。

		List<Integer> list = Arrays.asList(7, 6, 4, 8, 2, 11, 9);

		long count = list.stream().filter(x -> x > 6).count();
		System.out.println("list中大于6的元素个数:" + count);

3.4 映射(map/flatMap)

映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为map和flatMap:

map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。

在这里插入图片描述
flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
在这里插入图片描述

案例一:英文字符串数组的元素全部改为大写。整数数组每个元素+3。

		String[] strArr = { "abcd", "bcdd", "defde", "fTr" };
		List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());

		List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11);
		List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());

		System.out.println("每个元素大写:" + strList);
		System.out.println("每个元素+3:" + intListNew);

案例二:将员工的薪资全部增加1000。

		List<Person> personList = new ArrayList<Person>();
		personList.add(new Person("Tom", 8900, 23, "male", "New York"));
		personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
		personList.add(new Person("Anni", 8200, 24, "female", "New York"));
		personList.add(new Person("Owen", 9500, 25, "male", "New York"));
		personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

		// 不改变原来员工集合的方式
		List<Person> personListNew = personList.stream().map(person -> {
			Person personNew = new Person(person.getName(), 0, 0, null, null);
			personNew.setSalary(person.getSalary() + 10000);
			return personNew;
		}).collect(Collectors.toList());
		System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary());
		System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary());

		// 改变原来员工集合的方式
		List<Person> personListNew2 = personList.stream().map(person -> {
			person.setSalary(person.getSalary() + 10000);
			return person;
		}).collect(Collectors.toList());
		System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary());
		System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary());
	}

案例三:将两个字符数组合并成一个新的字符数组。

		List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7");
		List<String> listNew = list.stream().flatMap(s -> {
			// 将每个元素转换成一个stream
			String[] split = s.split(",");
			Stream<String> s2 = Arrays.stream(split);
			return s2;
		}).collect(Collectors.toList());

		System.out.println("处理前的集合:" + list);
		System.out.println("处理后的集合:" + listNew);

取出list中所有user的name属性放到一个新的list中:
在这里插入图片描述

此外,map系列还有mapToInt、mapToLong、mapToDouble三个函数,它们以一个映射函数为入参,将流中每一个元素处理后生成一个新流。以mapToInt为例,看两个示例:

public static void main(String[] args)  {
	// 输出字符串集合中每个字符串的长度
    List<String> stringList = Arrays.asList("mu", "CSDN", "hello",
            "world", "quickly");
    stringList.stream().mapToInt(String::length).forEach(System.out::println);
    // 将int集合的每个元素增加1000
    List<Integer> integerList = Arrays.asList(4, 5, 2, 1, 6, 3);
    integerList.stream().mapToInt(x -> x + 1000).forEach(System.out::println);
}

mapToInt三个函数生成的新流,可以进行很多后续操作,比如求最大最小值、求和、求平均值:

public static void main(String[] args) {
    List<Double> doubleList = Arrays.asList(1.0, 2.0, 3.0, 4.0, 2.0);
    double average = doubleList.stream().mapToDouble(Number::doubleValue).average().getAsDouble();
    double sum = doubleList.stream().mapToDouble(Number::doubleValue).sum();
    double max = doubleList.stream().mapToDouble(Number::doubleValue).max().getAsDouble();
    System.out.println("平均值:" + average + ",总和:" + sum + ",最大值:" + max);
}

3.5 归约(reduce)

归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。

在这里插入图片描述
案例一:求Integer集合的元素之和、乘积和最大值。

		List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4);
		// 求和方式1
		Optional<Integer> sum = list.stream().reduce((x, y) -> x + y);
		// 求和方式2
		Optional<Integer> sum2 = list.stream().reduce(Integer::sum);
		// 求和方式3
		Integer sum3 = list.stream().reduce(0, Integer::sum);
		
		// 求乘积
		Optional<Integer> product = list.stream().reduce((x, y) -> x * y);

		// 求最大值方式1
		Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y);
		// 求最大值写法2
		Integer max2 = list.stream().reduce(1, Integer::max);

		System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3);
		System.out.println("list求积:" + product.get());
		System.out.println("list求最大值:" + max.get() + "," + max2);

案例二:求所有员工的工资之和和最高工资。

		List<Person> personList = new ArrayList<Person>();
		personList.add(new Person("Tom", 8900, 23, "male", "New York"));
		personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
		personList.add(new Person("Anni", 8200, 24, "female", "New York"));
		personList.add(new Person("Owen", 9500, 25, "male", "New York"));
		personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

		// 求工资之和方式1:
		Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum);
		// 求工资之和方式2:
		Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(),
				(sum1, sum2) -> sum1 + sum2);
		// 求工资之和方式3:
		Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum);

		// 求最高工资方式1:
		Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
				Integer::max);
		// 求最高工资方式2:
		Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
				(max1, max2) -> max1 > max2 ? max1 : max2);
		// 求最高工资方式3:
		Integer maxSalary3 = personList.stream().map(Person::getSalary).reduce(Integer::max).get();

		System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3);
		System.out.println("最高工资:" + maxSalary + "," + maxSalary2 + "," + maxSalary3);

3.6 收集(collect)

collect,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。

collect主要依赖java.util.stream.Collectors类内置的静态方法。

3.6.1 归集(toList/toSet/toMap)

因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toList、toSet和toMap比较常用,另外还有toCollection、toConcurrentMap等复杂一些的用法。

下面用一个案例演示toList、toSet和toMap:

		List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
		List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
		Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());

		List<Person> personList = new ArrayList<Person>();
		personList.add(new Person("Tom", 8900, 23, "male", "New York"));
		personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
		personList.add(new Person("Anni", 8200, 24, "female", "New York"));
		
		Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000)
				.collect(Collectors.toMap(Person::getName, p -> p));
		System.out.println("toList:" + listNew);
		System.out.println("toSet:" + set);
		System.out.println("toMap:" + map);

3.6.2 统计(count/averaging)

在这里插入图片描述
案例:统计员工人数、平均工资、工资总额、最高工资。

		List<Person> personList = new ArrayList<Person>();
		personList.add(new Person("Tom", 8900, 23, "male", "New York"));
		personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

		// 求总数
		Long count = personList.stream().collect(Collectors.counting());
		// 求平均工资
		Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));
		// 求最高工资
		Optional<Integer> max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));
		// 求工资之和
		Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary));
		// 一次性统计所有信息
		DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));

		System.out.println("员工总数:" + count);
		System.out.println("员工平均工资:" + average);
		System.out.println("员工工资总和:" + sum);
		System.out.println("员工工资所有统计:" + collect);

3.6.3 分区分组(partitioningBy/groupingBy)

  • 分区:将stream按条件分为两个Map,比如员工按薪资是否高于8000分为两部分。
  • 分组:将集合分为多个Map,比如员工按性别分组。有单级分组和多级分组。

在这里插入图片描述

案例:将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组

		List<Person> personList = new ArrayList<Person>();
		personList.add(new Person("Tom", 8900, "male", "New York"));
		personList.add(new Person("Jack", 7000, "male", "Washington"));
		personList.add(new Person("Lily", 7800, "female", "Washington"));
		personList.add(new Person("Anni", 8200, "female", "New York"));
		personList.add(new Person("Owen", 9500, "male", "New York"));
		personList.add(new Person("Alisa", 7900, "female", "New York"));

		// 将员工按薪资是否高于8000分组
        Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));
        // 将员工按性别分组
        Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex));
        // 将员工先按性别分组,再按地区分组
        Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));
        System.out.println("员工按薪资是否大于8000分组情况:" + part);
        System.out.println("员工按性别分组情况:" + group);
        System.out.println("员工按性别、地区:" + group2);

3.6.4 接合(joining)

joining可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。

		List<Person> personList = new ArrayList<Person>();
		personList.add(new Person("Tom", 8900, 23, "male", "New York"));
		personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

		String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(","));
		System.out.println("所有员工的姓名:" + names);
		List<String> list = Arrays.asList("A", "B", "C");
		String string = list.stream().collect(Collectors.joining("-"));
		System.out.println("拼接后的字符串:" + string);

3.6.5 归约(reducing)

Collectors类提供的reducing方法,相比于stream本身的reduce方法,增加了对自定义归约的支持。

		List<Person> personList = new ArrayList<Person>();
		personList.add(new Person("Tom", 8900, 23, "male", "New York"));
		personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

		// 每个员工减去起征点后的薪资之和(这个例子并不严谨,但一时没想到好的例子)
		Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));
		System.out.println("员工扣税薪资总和:" + sum);

		// stream的reduce
		Optional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum);
		System.out.println("员工薪资总和:" + sum2.get());

3.7 排序(sorted)

sorted,中间操作。有两种排序:

sorted():自然排序,流中元素需实现Comparable接口
sorted(Comparator com):Comparator排序器自定义排序

案例:将员工按工资由高到低(工资一样则按年龄由大到小)排序

		List<Person> personList = new ArrayList<Person>();

		personList.add(new Person("Sherry", 9000, 24, "female", "New York"));
		personList.add(new Person("Tom", 8900, 22, "male", "Washington"));
		personList.add(new Person("Jack", 9000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 8800, 26, "male", "New York"));
		personList.add(new Person("Alisa", 9000, 26, "female", "New York"));

		// 按工资升序排序(自然排序)
		List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
				.collect(Collectors.toList());
		// 按工资倒序排序
		List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
				.map(Person::getName).collect(Collectors.toList());
		// 先按工资再按年龄升序排序
		List<String> newList3 = personList.stream()
				.sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName)
				.collect(Collectors.toList());
		// 先按工资再按年龄自定义排序(降序)
		List<String> newList4 = personList.stream().sorted((p1, p2) -> {
			if (p1.getSalary() == p2.getSalary()) {
				return p2.getAge() - p1.getAge();
			} else {
				return p2.getSalary() - p1.getSalary();
			}
		}).map(Person::getName).collect(Collectors.toList());

		System.out.println("按工资升序排序:" + newList);
		System.out.println("按工资降序排序:" + newList2);
		System.out.println("先按工资再按年龄升序排序:" + newList3);
		System.out.println("先按工资再按年龄自定义降序排序:" + newList4);

3.8 提取/组合

流也可以进行合并、去重、限制、跳过等操作。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

		String[] arr1 = { "a", "b", "c", "d" };
		String[] arr2 = { "d", "e", "f", "g" };

		Stream<String> stream1 = Stream.of(arr1);
		Stream<String> stream2 = Stream.of(arr2);
		// concat:合并两个流 distinct:去重
		List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());
		// limit:限制从流中获得前n个数据
		List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());
		// skip:跳过前n个数据
		List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());

		System.out.println("流合并:" + newList);
		System.out.println("limit:" + collect);
		System.out.println("skip:" + collect2);
更多推荐

Ubuntu修改静态IP、网关和DNS的方法总结

Ubuntu修改静态IP、网关和DNS的方法总结ubuntu系统(其他debian的衍生版本好像也可以)修改静态IP有以下几种方法。(搜索总结,可能也不太对)/etc/netplan(use)Ubuntu18.04开始可以使用netplan配置网络,其也是默认安装的。配置文件位于/etc/netplan/xxx.yam

深入实现 MyBatis 底层机制的实现任务阶段 7- 实现动态代理 Mapper 的方法

😀前言在Java世界里,MyBatis是一个优秀的持久层框架,它支持自定义SQL、存储过程以及高级映射。MyBatis消除了几乎所有的JDBC代码和参数的手动设置以及结果集的检索。MyBatis可以使用简单的XML或注解进行配置,并且能映射基本类型、Map接口及任何JavaPOJO(PlainOldJavaObjec

应用案例 | 使用dataFEED OPC Suite将汽车零部件工厂数据集成到SAP Business Suite

一背景某知名空气过滤和热管理组件供应商是一家专业的汽车零部件制造集团——专注于液体和空气过滤系统、进气系统以及热管理组件的生产与销售。该集团在全球范围内拥有24个生产工厂,并在运营中广泛采用了SAPBusinessSuite作为其企业资源规划(ERP)和制造执行系统(MES)。该集团的主要业务需求是将来自车间设备的生产

SpringSecurity 权限管理的实现

文章目录前言权限管理的实现权限校验的原理FilterSecurityInterceptorAccessDescisionManagerAffirmativeBasedConsensusBasedUnanimousBasedAccessDecisionVoterWebExpressionVoterAuthenticate

响应式网页设计(Responsive Web Design)的核心原理

聚沙成塔·每天进步一点点⭐专栏简介⭐响应式网页设计的核心原理⭐优点和缺点优点缺点⭐写在最后⭐专栏简介前端入门之旅:探索Web开发的奇妙世界欢迎来到前端入门之旅!感兴趣的可以订阅本专栏哦!这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发者,这里都将为你提供一个

国产化系统中遇到的视频花屏、卡顿以及延迟问题的记录与总结

目录1、国产化系统概述1.1、国产化操作系统与国产化CPU1.2、国产化服务器操作系统1.3、当前国产化系统的主流配置2、视频解码花屏与卡顿问题2.1、视频解码花屏2.2、视频解码卡顿2.3、关于I帧和P帧的说明3、国产显卡处理速度慢导致图像卡顿问题3.1、视频延时和卡顿原因分析3.2、SDL2库跑在景嘉微国产显卡上效

亚马逊、敦煌网、国际站自养号测评需要哪些资源与技术门槛?

测评服务商说的天花乱坠,实际真假难辨,FB等社交软件自找测评犹如大海捞针。产品都要上架了,靠谱的测评服务还是没找到,亚马逊测评求人不如求己,今天来教你怎么养一批安全、可控的买家号。亚马逊等跨境平台测评自养号需要用到哪些资源呢?1、养号系统及软件2、代理IP资源3、收货地址及注册资料4、外币信用卡及礼品卡5、邮箱及手机号

当量因子法、InVEST、SolVES模型等多技术融合在生态系统服务功能社会价值评估中的应用及论文写作、拓展分析

生态系统服务是人类从自然界中获得的直接或间接惠益,可分为供给服务、文化服务、调节服务和支持服务4类,对提升人类福祉具有重大意义,且被视为连接社会与生态系统的桥梁。自从启动千年生态系统评估项目(MillenniumEcosystemAssessment,MA)以来,生态系统服务成为学术界的研究热点,其中在生态系统服务功能

学习笔记|模数转换器|ADC原理|STC32G单片机视频开发教程(冲哥)|第十七集:ADC采集

文章目录1.模数转换器(ADC)是什么?手册说明:2.STC32G单片机ADC使用原理19.1.1ADC控制寄存器(ADC_CONTR)19.1.2ADC配置寄存器(ADCCFG)19.1.4ADC时序控制寄存器(ADCTIM)19.3ADC相关计算公式3.编写最简单的ADC采集代码(查询&中断)P10的引脚去获取一个

4、ARM异常处理

一、异常处理1、异常概念处理器在正常执行程序的过程中可能会遇到一些不正常的的事件发生,这时处理器就要将当前的程序暂停下来转去处理这个异常的事件,异常事件完成后再返回到之前被异常打断的点继续执行2、异常处理机制不同的处理器对异常的处理流程大体相同,但是不同的处理器在具体实现的机制上有所不同。比如处理器遇到哪些事件认为是异

【Flink实战】玩转Flink里面核心的Source Operator实战

🚀作者:“大数据小禅”🚀文章简介:【Flink实战】玩转Flink里面核心的SourceOperator实战🚀欢迎小伙伴们点赞👍、收藏⭐、留言💬目录导航Flink的API层级介绍SourceOperator速览Flink预定义的Source数据源案例实战Flink自定义的Source数据源案例-订单来源实战F

热文推荐