竞赛选题 基于深度学习的中文情感分类 - 卷积神经网络 情感分类 情感分析 情感识别 评论情感分类

2023-09-16 15:27:38

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的中文情感分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 情感文本分类

2.1 参考论文

Convolutional Neural Networks for Sentence
Classification

模型结构

在这里插入图片描述

在短文本分析任务中,由于句子句长长度有限、结构紧凑、能够独立表达意思,使得CNN在处理这一类问题上成为可能,主要思想是将ngram模型与卷积操作结合起来

2.2 输入层

如图所示,输入层是句子中的词语对应的wordvector依次(从上到下)排列的矩阵,假设句子有 n 个词,vector的维数为 k ,那么这个矩阵就是 n
× k 的(在CNN中可以看作一副高度为n、宽度为k的图像)。

这个矩阵的类型可以是静态的(static),也可以是动态的(non static)。静态就是word
vector是固定不变的,而动态则是在模型训练过程中,word vector也当做是可优化的参数,通常把反向误差传播导致word
vector中值发生变化的这一过程称为Fine tune。(这里如果word
vector如果是随机初始化的,不仅训练得到了CNN分类模型,还得到了word2vec这个副产品了,如果已经有训练的word
vector,那么其实是一个迁移学习的过程)

对于未登录词的vector,可以用0或者随机小的正数来填充。

2.3 第一层卷积层:

输入层通过卷积操作得到若干个Feature Map,卷积窗口的大小为 h ×k ,其中 h 表示纵向词语的个数,而 k 表示word
vector的维数。通过这样一个大型的卷积窗口,将得到若干个列数为1的Feature Map。(熟悉NLP中N-GRAM模型的读者应该懂得这个意思)。

2.4 池化层:

接下来的池化层,文中用了一种称为Max-over-timePooling的方法。这种方法就是简单地从之前一维的Feature
Map中提出最大的值,文中解释最大值代表着最重要的信号。可以看出,这种Pooling方式可以解决可变长度的句子输入问题(因为不管Feature
Map中有多少个值,只需要提取其中的最大值)。最终池化层的输出为各个Feature Map的最大值们,即一个一维的向量。

2.5 全连接+softmax层:

池化层的一维向量的输出通过全连接的方式,连接一个Softmax层,Softmax层可根据任务的需要设置(通常反映着最终类别上的概率分布)。

2.6 训练方案

在倒数第二层的全连接部分上使用Dropout技术,Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分,但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了,它是防止模型过拟合的一种常用的trikc。同时对全连接层上的权值参数给予L2正则化的限制。这样做的好处是防止隐藏层单元自适应(或者对称),从而减轻过拟合的程度。

在样本处理上使用minibatch方式来降低一次模型拟合计算量,使用shuffle_batch的方式来降低各批次输入样本之间的相关性(在机器学习中,如果训练数据之间相关性很大,可能会让结果很差、泛化能力得不到训练、这时通常需要将训练数据打散,称之为shuffle_batch)。

3 实现

在这里插入图片描述
我们以上图为例,图上用红色标签标注了5部分,结合这5个标签,具体解释下整个过程的操作,来看看CNN如何解决文本分类问题的。

3.1 sentence部分

上图句子为“[I like this movie very much!”
,一共有两个单词加上一个感叹号,关于这个标点符号,不同学者有不同的操作,比如去除标点符号。在这里我们先不去除,那么整个句子有7个词,词向量维度为5,那么整个句子矩阵大小为7x5

3.2 filters部分

filters的区域大小可以使不同的,在这里取(2,3,4)3种大小,每种大小的filter有两个不同的值的filter,所以一共是有6个filter。

3.3 featuremaps部分

我们在句子矩阵和过滤器矩阵填入一些值,那么我们可以更好理解卷积计算过程,这和CNN原理那篇文章一样

在这里插入图片描述

比如我们取大小为2的filter,最开始与句子矩阵的前两行做乘积相加,得到0.6 x 0.2 + 0.5 x 0.1 + … + 0.1 x 0.1 =
0.51,然后将filter向下移动1个位置得到0.53.最终生成的feature map大小为(7-2+1x1)=6。
为了获得feature map,我们添加一个bias项和一个激活函数,比如Relu

3.4 1max部分

因为不同大小的filter获取到的feature map大小也不一样,为了解决这个问题,然后添加一层max-
pooling,选取一个最大值,相同大小的组合在一起

3.5 concat1max部分

经过max-pooling操作之后,我们将固定长度的向量给sofamax,来预测文本的类别。

3.6 关键代码

下面是利用Keras实现的CNN文本分类部分代码:



    # 创建tensor
    print("正在创建模型...")
    inputs=Input(shape=(sequence_length,),dtype='int32')
    embedding=Embedding(input_dim=vocabulary_size,output_dim=embedding_dim,input_length=sequence_length)(inputs)
    reshape=Reshape((sequence_length,embedding_dim,1))(embedding)
    
    # cnn
    conv_0=Conv2D(num_filters,kernel_size=(filter_sizes[0],embedding_dim),padding='valid',kernel_initializer='normal',activation='relu')(reshape)
    conv_1=Conv2D(num_filters,kernel_size=(filter_sizes[1],embedding_dim),padding='valid',kernel_initializer='normal',activation='relu')(reshape)
    conv_2=Conv2D(num_filters,kernel_size=(filter_sizes[2],embedding_dim),padding='valid',kernel_initializer='normal',activation='relu')(reshape)
    
    maxpool_0=MaxPool2D(pool_size=(sequence_length-filter_sizes[0]+1,1),strides=(1,1),padding='valid')(conv_0)
    maxpool_1=MaxPool2D(pool_size=(sequence_length-filter_sizes[1]+1,1),strides=(1,1),padding='valid')(conv_1)
    maxpool_2=MaxPool2D(pool_size=(sequence_length-filter_sizes[2]+1,1),strides=(1,1),padding='valid')(conv_2)


    concatenated_tensor = Concatenate(axis=1)([maxpool_0, maxpool_1, maxpool_2])
    flatten = Flatten()(concatenated_tensor)
    dropout = Dropout(drop)(flatten)
    output = Dense(units=2, activation='softmax')(dropout)
    model=Model(inputs=inputs,outputs=output)


**main.py**


    import os
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"   # see issue #152
    os.environ["CUDA_VISIBLE_DEVICES"] = ""



    import re
    import numpy as np
    from flask import Flask, render_template, request
    from keras.models import load_model
    from data_helpers_english import build_input_english
    from data_helpers_chinese import build_input_chinese
    
    app = Flask(__name__)


    en_model = load_model('results/weights.007-0.7618.hdf5')
    ch_model = load_model('results/chinese.weights.003-0.9083.hdf5')
    # load 进来模型紧接着就执行一次 predict 函数
    print('test train...')
    print(en_model.predict(np.zeros((1, 56))))
    print(ch_model.predict(np.zeros((1, 50))))
    print('test done.')
    
    def en_predict(input_x):
        sentence = input_x
        input_x = build_input_english(input_x)
        y_pred = en_model.predict(input_x)
        result = list(y_pred[0])
        result = {'sentence': sentence, 'positive': result[1], 'negative': result[0]}
        return result
    
    def ch_predict(input_x):
        sentence = input_x
        input_x = build_input_chinese(input_x)
        y_pred = ch_model.predict(input_x)
        result = list(y_pred[0])
        result = {'sentence': sentence, 'positive': result[1], 'negative': result[0]}
        return result
    
    @app.route('/classification', methods=['POST', 'GET'])
    def english():
        if request.method == 'POST':
            review = request.form['review']
            # 来判断是中文句子/还是英文句子
            review_flag = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", review)  # 去除数字
            review_flag = re.sub("[\s+\.\!\/_,$%^*(+\"\')]+|[+——()?【】“”!,。?、~@#¥%……&*()]+", "", review_flag)
            if review_flag:
                result = en_predict(review)
                # result = {'sentence': 'hello', 'positive': '03.87878', 'negative': '03.64465'}
                return render_template('index.html', result=result)
            else:
                result = ch_predict(review)
                # result = {'sentence': 'hello', 'positive': '03.87878', 'negative': '03.64465'}
                return render_template('index.html', result=result)
        return render_template('index.html')
    
    #
    # if __name__ == '__main__':
    #     app.run(host='0.0.0.0', debug=True)

4 实现效果

4.1 测试英文情感分类效果

在这里插入图片描述
准训练结果:验证集76%左右

4.2 测试中文情感分类效果

在这里插入图片描述

准训练结果:验证集91%左右

5 调参实验结论

  • 由于模型训练过程中的随机性因素,如随机初始化的权重参数,mini-batch,随机梯度下降优化算法等,造成模型在数据集上的结果有一定的浮动,如准确率(accuracy)能达到1.5%的浮动,而AUC则有3.4%的浮动;
  • 词向量是使用word2vec还是GloVe,对实验结果有一定的影响,具体哪个更好依赖于任务本身;
  • Filter的大小对模型性能有较大的影响,并且Filter的参数应该是可以更新的;
  • Feature Map的数量也有一定影响,但是需要兼顾模型的训练效率;
  • 1-max pooling的方式已经足够好了,相比于其他的pooling方式而言;
  • 正则化的作用微乎其微。

6 建议

  • 使用non-static版本的word2vec或者GloVe要比单纯的one-hot representation取得的效果好得多;
  • 为了找到最优的过滤器(Filter)大小,可以使用线性搜索的方法。通常过滤器的大小范围在1-10之间,当然对- 于长句,使用更大的过滤器也是有必要的;
  • Feature Map的数量在100-600之间;
  • 可以尽量多尝试激活函数,实验发现ReLU和tanh两种激活函数表现较佳;
  • 使用简单的1-max pooling就已经足够了,可以没必要设置太复杂的pooling方式;
  • 当发现增加Feature Map的数量使得模型的性能下降时,可以考虑增大正则的力度,如调高dropout的概率;
  • 为了检验模型的性能水平,多次反复的交叉验证是必要的,这可以确保模型的高性能并不是偶然。

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

更多推荐

复杂问题问答

复杂问题问答写在最前面复杂问题问答问答系统分类知识图谱现存问题论文1分类写在最前面希望通过了解,找到目标应用场景的方法具体属于哪一个分支,并初步实现通过阅读文献,找到了另一个研究方向,所以这个就先这样吧hh参考[1]冯钧,李艳,杭婷婷.问答系统中复杂问题分解方法研究综述[J].计算机工程与应用,2022,58(17):

设计模式-中介者模式

每次乘坐高铁出行时,我都会像这样一个问题:这么多列车都可能通过这条轨道,会不会存在冲突的可能呢?同样的,飞机的起飞和降落时对于道路的选择也会有冲突的可能。这些情况都会造成可怕的后果,而阻止这种情况发生的就是机场调度中心。飞机在起飞和降落前都会请求机场调度中心,由机场调度中心来负责协调飞机、地面道路、摆渡车辆等。因此,机

剑指offer(C++)-JZ67:把字符串转换成整数atoi(算法-模拟)

作者:翟天保Steven版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处题目描述:写一个函数StrToInt,实现把字符串转换成整数这个功能。不能使用atoi或者其他类似的库函数。传入的字符串可能有以下部分组成:1.若干空格2.(可选)一个符号字符('+'或'-')3.数字,字母,符号,空格

线性代数的本质(十)——矩阵分解

文章目录矩阵分解LU分解QR分解特征值分解奇异值分解奇异值分解矩阵的基本子空间奇异值分解的性质矩阵的外积展开式矩阵分解矩阵的因式分解是把矩阵表示为多个矩阵的乘积,这种结构更便于理解和计算。LU分解设AAA是m×nm\timesnm×n矩阵,若AAA可以写成乘积A=LUA=LUA=LU其中,LLL为mmm阶下三角方阵,主

CodeArts Check代码检查服务用户声音反馈集锦(4)

作者:gentle_zhou原文链接:CodeArtsCheck代码检查服务用户声音反馈集锦(4)-云社区-华为云CodeArtsCheck(原CodeCheck),是自主研发的代码检查服务。建立在华为30年自动化源代码静态检查技术积累与企业级应用经验的沉淀之上,为用户提供代码风格、通用质量与网络安全风险等丰富的检查能

【智慧工地源码】智慧工地助力数字建造、智慧建造、安全建造、绿色建造

智慧工地围绕建设过程管理,建设项目与智能生产、科学管理建设项目信息生态系统集成在一起,该数据在虚拟现实环境中,将物联网收集的工程信息用于数据挖掘和分析,提供过程趋势预测和专家计划,实现工程建设的智能化管理,提高工程管理信息水平,逐步实现绿色建设和生态建设。一、施工现场智能化管理物联网智慧工地通过手机/PAD自动感应或采

Python爬虫

一、保存数据到Excelfrombs4importBeautifulSoup#网页解析,获取数据importre#正则表达式,进行文字匹配importurllib.request,urllib.error#制定URL,获取网页数据importxlwt#进行excel操作importsqlite3#进行SQLite数据库

【案例+源码】数据可视化之统计绘图-Seaborn全套教程

数据可视化-Seaborn简易入门Matplotlib试着让简单的事情更加简单,困难的事情变得可能,而Seaborn就是让困难的东西更加简单。seaborn是针对统计绘图的,一般来说,seaborn能满足数据分析90%的绘图需求。Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更

前端JavaScript中requestAnimationFrame:优化动画和渲染的利器

🎬岸边的风:个人主页🔥个人专栏:《VUE》《javaScript》⛺️生活的理想,就是为了理想的生活!目录引言1.requestAnimationFrame简介2.requestAnimationFrame的属性3.requestAnimationFrame的应用场景3.1动画效果3.2游戏开发3.3数据可视化3.

SpringBoot结合Vue.js+axios框架实现增删改查功能+网页端实时显示数据库数据(包括删除多条数据)

本文适用对象:已有基础的同学,知道基础的SpringBoot配置和Vue操作。在此基础上本文实现基于SpringBoot和Vue.js基础上的增删改查和数据回显、刷新等。一、实时显示数据库数据实现步骤:第1步:编写动态请求响应类:在启动类同父目录下创建controller包,在包下创建DataController类,添

Compose的一些小Tips - 可组合项的绘制

系列文章Compose的一些小Tips-可组合项的生命周期Compose的一些小Tips-可组合项的绘制(本文)Compose的一些小Tips-列表的优化前言本系列介绍Compose的一些常识,了解这些tips并不会让人摇身一变成为大佬,但可以帮助到一些学习Compose的安卓开发者避免一些误区,也是对Compose入

热文推荐